

VERification-oriented & component-based model Driven Engineering for real-time embedded systems

Properties of Realistic Feature Models make Combinatorial Testing of Product Lines Feasible

Martin F. Johansen^{1,2}, Øystein Haugen¹ and Franck Fleurey¹

¹SINTEF ICT, Oslo, Norway ²Institute for informatics, University of Oslo, Norway

Example Product Line: Eclipse

	Java	Java EE	C/C++	C/C++ Linux	RCP/RAP	Modeling	BIRT Reporting	Parallel	Scout	Testers	Javascript	Classic
RCP/Platform	1	1	1	1	✓	✓	✓	✓	✓	✓	✓	✓
cvs	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
EGit			✓	✓	✓	✓						
EMF	✓	✓				✓	✓					
GEF	✓	✓				✓	✓					
JDT	✓	√			✓	✓	✓		✓			✓
Mylyn	✓	√	✓	✓	✓	✓	✓	✓	✓	✓	✓	
Web Tools		✓					✓				✓	
Linux Tools			✓	✓				✓				
Java EE Tools		✓					✓					
XML Tools	✓	✓			✓		✓	✓				
RSE		√	✓	✓			✓	✓				
EclipseLink		✓					✓			✓		
PDE		✓			✓	✓	✓		✓			✓
Datatools		✓					✓					
CDT			✓	1				✓				
BIRT							✓					
GMF						✓						
PTP								✓				
MDT						✓						
Scout									✓			
Jubula										✓		
RAP					✓							
WindowBuilder	✓											
Maven	✓											

Example: Feature model

Carbon A MacOSX A x86 v Cocoa A MacOSX A (x86 v x86_64) v GTK A Linux A (x86 v x86_64) v Motif A Linux A x86 v Win32 A OS_Win32 A (x86 v x86_64)

Basic Question of SPL Testing

 How do we gain confidence in that <u>any valid</u> <u>product</u> will work?

Carbon A MacOSX A x86 V Cocoa A MacOSX A (x86 V x86_64) V GTK A Linux A (x86 V x86_64) V Motif A Linux A x86 V Win32 A OS_Win32 A (x86 V x86_64)

	Java	Java EE	C/C++	C/C++ Linux	RCP/RAP	Modeling	BIRT Reporting	Parallel	Scout	Testers	Javascript	Classic
RCP/Platform	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
cvs	1	✓	1	1	✓	✓	✓	✓	1	✓	✓	✓
EGIt			1	1	✓	✓						
EMF	1	✓				✓	✓					
GEF	1	✓				✓	✓					
JDT	1	✓			✓	✓	✓		1			✓
Mylyn	1	✓	1	1	✓	√	1	1	1	✓	√	
Web Tools		✓					1				√	
Linux Tools			1	1				1				
Java EE Tools		✓					1					
XML Tools	1	✓			✓		1	1				
RSE		✓	1	1			✓	1				
EclipseLink		✓					1			✓		
PDE		✓			1	✓	1		1			✓
Datatools		✓					✓					
CDT			1	1				✓				
BIRT							✓					
GMF						✓						
PTP								✓				
MDT						✓						
Scout									✓			
Jubula										✓		
RAP					✓							
WindowBuilder	✓											
Maven	1											

Many suggestions

- Generally, not done in industry
- Problems of scalability
 - ScenTED and PLUTO
 - Variability stereotyped onto a UML model.
 - UML model becomes large (it is the union of all products)
 - How to generate the tests is still unsolved.
 - Incremental approach
 - Differences between products modeled precisely.
 - Involves intractable formal analysis.
 - Large, unsolved problem in informatics.
 - Combinatorial Interaction Testing (CIT)

• ...

Interaction faults

- A bug that occurs when 2 features are in a product
 - 2-wise interaction fault
- The other do not matter

Interaction faults

- A bug that occurs when 4 features are in a product
 - 4-wise interaction fault
- The other do not matter

Empirical basis for CIT

- Kuhn et al. 2004:
 - Most bugs can be attributed to the interaction of a few features.

Combinatorial Interaction Testing (CIT)

- Produce a covering array
 - The valid products that includes all interactions between e.g. 2 features.
 - Generating such an array is regarded as intractable (takes too long).
- Apply a single system testing technique to each product

CIT: Is it really intractable?

- Answer: No!
- Outline of the argument
 - Analyze the complexity of CIT.
 - Identify the intractable part.
 - Identify the reason and whether that reason is valid.
 - Experiment that motivated the analysis.
 - Is our conclusions consistent with empirics?

Covering array generation

- Set covering is NP-Complete
- Chvátal's algorithm
 - Greedy approximation of set cover
 - Add the product that cover as many new interactions as possible – until all are covered.
 - Add a product ≡ SAT
 - is NP-hard: No approximation is possible...
 - Therefore covering array generation is intractable...

Feature\ Product	1		2 X X		3	
EclipseSPL	Χ		Χ		X	
WindowingSystem	X		Х		3 X X X	
Win32	_		-		Χ	
GTK	_		- X		-	
Motif	_		-		-	
Carbon	_		-		-	
Cocoa	X		_		_	
OS	X		Х		X	
OS_Win32	_		X - X		Х	
Linux	_		Х		_	
MacOSX	X		_		_	
Hardware	X X		- X		Х	
x86	X	\perp			_	
x86_64	_	ı	- X	ı	X	
Team	_		-		-	
CVS	_		-		-	
CVS_Over_SSH	-		-		-	
CVS_Over_SSH2	_		_		_	
SVN	-		-		-	
Subversive	-		-		-	
Subclipse	-		-		-	
Subclipse_1_4_x	-		-		-	
Subclipse_1_6_x	-		-		-	
GIT	-		-		-	
EclipseFileSystem	Х		X X		Х	
Local	Х		X		X	
Zip	-		-		-	

Feature models and SAT

 $q = (\ (\mbox{$^{\circ}$} p \ \& \ d \ \& \ c\) \ V \ (p \ \& \ d \ \& \ \mbox{$^{\circ}$} c) \ V \ (p \ \& \ \mbox{$^{\circ}$} d \ \& \ \mbox{$^{\circ}$} c) \) \ V \ ...$

p=true, d=true, c=false, ...?

Finding a single product

- A company has developed a product line and modeled the valid configurations/products with a feature model
- Scenario 1:
 - No one is able to configure it... (SAT is NP-hard)
 - Then testing is not your concern
- Scenario 2:
 - A lot of products in the market
 - Then it must have been relatively quick to configure it

Finding a single product

Scenario 3:

- A computer takes several hours to find a solution.
- Violation of the purpose of feature models
 - Should enable customers to configure a product to fit their business needs.
 - Start with an empty configuration and add features as needed, while understanding the implications of their decisions.
- Both customers and developers will be unable to reason about the configurations
- Therefore, realistic feature models are quickly satisfiable

Experiment

- gathered available feature models (not randomly generated)
- Implemented tool
 - Handles all the formats
- Our source of empirics.
- Feature models and tool available

	Feature Model \setminus keys	Features	Constraints
	2.6.28.6-icse11.dimacs	6,888	187,193
	freebsd-icse11.dimacs	1,396	17,352
	ecos-icse11.dimacs	1,244	2,768
	Eshop-fm.xml	287	22
	Violet.m	101	90
	Berkeley.m	78	47
	arcade_game_pl_fm.xml	61	35
	Gg4.m	38	23
	$smart_home_fm.xml$	35	1
	TightVNC.m	30	4
	Apl.m	25	3
7	fame_dbms_fm.xml	21	1
_	$connector_fm.xml$	20	1
	Graph-product-line-fm.xml	20	15
	$stack_fm.xml$	17	1
7	REAL-FM-12.xml	14	3
_	$movies_app_fm.xml$	13	1
	aircraft_fm.xml	13	1
	car_fm.xml	9	3

Is it consistent with empirics?

- SAT generally is O(2ⁿ)
- Was a source of inspiration for the quick satisfiability

			SAT
Feature Model \ keys	Features	Constraints	time
, ,			(ms)
2.6.28.6-icse11.dimacs	6,888	187,193	125
freebsd-icse11.dimacs	1,396	17,352	18
ecos-icse11.dimacs	1,244	2,768	12
Eshop-fm.xml	287	22	5
Violet.m	101	90	1
Berkeley.m	78	47	1
arcade_game_pl_fm.xml	61	35	3
Gg4.m	38	23	1
$smart_home_fm.xml$	35	1	9
TightVNC.m	30	4	1
Apl.m	25	3	1
fame_dbms_fm.xml	21	1	3
$connector_fm.xml$	20	1	3
Graph-product-line-fm.xml	20	15	3
stack_fm.xml	17	1	7
REAL-FM-12.xml	14	3	7
movies_app_fm.xml	13	1	3
$aircraft_fm.xml$	13	1	7
car_fm.xml	9	3	7

Future work

- A more efficient algorithm is still needed.
 - The quick satisfiability property can be utilized to achieve this.

Feature Model \ keys	Features	Constraints	2-way size	2-way time (ms)
2.6.28.6-icse11.dimacs	6,888	187,193	n/a	n/a
freebsd-icse11.dimacs	1,396	17,352	n/a	n/a
ecos-icse11.dimacs	1,244	2,768	n/a	n/a
Eshop-fm.xml	287	22	22	364,583
Violet.m	101	90	28	21,278
Berkeley.m	78	47	23	11,195
arcade_game_pl_fm.xml	61	35	17	8,219

In conclusion

Our contributions

- An experiment on a collection of realistic feature models
 - Feature models
 - Tool implementation
- Quick satisfiability is a property of realistic feature models.
- That property makes CIT feasible for testing realistic product lines.

