
ICT

An Algorithm for Generating t-wise

Covering Arrays from Large Feature

Models

Martin Fagereng Johansen

Øystein Haugen

Franck Fleurey

SPLC 2012 – Salvador, Brazil

ICT

Example Product Line: The Eclipse IDEs

2

ICT

Constraints Between Features

3

356,352 possible products

ICT

Product Line Verification

 How do we gain confidence that any valid product works?

4

ICT

Faulty Features

5

 Unit tests may find faults inside a single feature.

 n test suites required for a product line with n features.

 What about faulty cooperation between features?

 What if they interact incorrectly?

ICT

Interaction Faults

6

 2-wise interaction fault

 reproducible by including 2 specific features

 the others do not matter

ICT

Interaction Faults

7

 3-wise interaction fault

 reproducible by including 3 specific features

 the others do not matter

ICT

 Kuhn et al. 2004:

 Most bugs can be attributed to the interaction of a few features.

Empirics Show:

8

ICT

 Mathematical property:

 Only a few products needed to cover all simple interactions

 Other examples (pair-wise testing):

 For the "e-shop product line" with 287 features: 21 products

 For the Linux kernel with almost 7,000 features: 480 products

Covering Arrays

9

ICT

1. Generate a covering array

 Can be reused until the feature model is changed

2. Build each product

3. Apply a single system testing technique to each product

 Note: CIT was originally intended

for single system testing

 Covering arrays over input instead

of interactions.

Combinatorial Interaction Testing (CIT)

scalability issue

10

ICT

Background

 Our MODELS 2011 paper concludes:

 Covering array generation is tractable in practice.

 Difficult to satisfy FMs imply no products to sell, which is absurd.

 An efficient algorithm was not provided.

 2-wise testing limit: about 500 features

 3-wise testing limit: about 200 features

 An efficient algorithm is contributed in this paper.

 2-wise testing

 Now works for the Linux Kernel feature model (6888 features)

 3-wise testing

 Now works for the eCos feature model (1244 features)

 (An optimized C/C++ implementation + some good hardware should

work even for the Linux Kernel feature model.)

11

ICT

Overview of the Algorithm

 Implementation Supports

 Simple XML Feature

Models (SXFM)

 GUI DSL

 DIMACS

 CVL (Proposed OMG

standard)

 CSV-file

ICPL

12

t

ICT

 Data Structures

 a = (feature, included) – an assignment

 e = {a1, a2, ..., at} – a t-set – a set of t assignments

 Tt – the set of all t-sets

 It – the set of all invalid t-sets

 Ut – the set of all valid t-sets (the "universe")

 C – configuration – a set of assignments, one for each feature

 CAt – {C1, C2, …, Cx} – a Covering Array of strength t

 Equations

 𝑇𝑡 = 2𝑡 𝑓
𝑡

, i.e. 95 million pair-wise interactions for the Linux kernel

 Empirically, 𝐼𝑡 ≪ 𝑈𝑡

 𝐶𝐴𝑡−1 ⊆ 𝐶𝐴𝑡, thus, generating 𝐶𝐴𝑡−1 before 𝐶𝐴𝑡 is an option.

13

Groundwork

ICT

 Recursive

generation of

covering arrays

of lesser

strength

 Greedy Loop

 Fit as many as

possible

 Remove those

covered

 … and repeat

until all inter-

actions are

covered

 Not parallel

14

ICT

 Pick an interaction

 Skip if covered

 Does it fit the product?

 yes

 no

 Make sure all features

are assigned

 Not parallel

15

Quick!

ICT

 Algorithm 3

 Is the assignment valid?

 Algorithm 7

 For all uncovered

interactions

 Is the interaction

covered?

 Algorithm 8

 Pick an interaction

 Check if it is invalid

 These are data-parallel

sub-algorithms

16

ICT

 ICPL – our new algorithm

 CASA – Simulated annealing algorithm by Garvin et al.

 MoSo-Polite – algorithm by Oster et al.

 IPOG – algorithm by Lei et al.

 Experiment Machine

 Could execute 6 threads in parallel

 32 GiB RAM

Compared to Other Tools

17

ICT

Time Taken to Generate

18

0

1

2

3

1-wise

0

1

2

3

4

2-wise

0

1

2

3

4

5

3-wise

ICPL

CASA

IPOG*

MoSo-
Polite

 Statistic estimates

 The 𝑐 in 𝑂(𝑓𝑐) where 𝑓 is the number of features

ICT

Size of Covering Arrays

19

0

10

20

30

40

50

60

70

1-wise

0

50

100

150

200

250

300

350

2-wise

0

200

400

600

800

3-wise

ICPL

CASA

IPOG*

MoSo-
Polite

ICT

Large Feature Models

…

20

ICT

Summary

 Our contribution

 A scalable algorithm for t-wise (1-3) covering array generation

 An empirical evaluation and comparison

 Implementation available

 The implementation is available as open source (EPL)

 Experiments are reproducible

 All the data is available

 All 28,500 measurements available for the paper's resource

website + charts and summaries

21

