An Algorithm for Generating t-wise Covering Arrays from Large Feature Models

Martin Fagereng Johansen

Øystein Haugen Franck Fleurey

ICT

SPLC 2012 – Salvador, Brazil

Example Product Line: The Eclipse IDEs

	Java	Java EE	© C/C++	C/C++ Linux		Modeling	JEE BIRT Reporting	Parallel	Scout	Testers	Javascript	Classic
RCP/Platform	~	1	1	~	✓	✓	~	\checkmark	1	1	1	~
CVS	1	~	~	~	~	✓	1	~	~	~	~	~
EGit			~	~	~	✓						
EMF	\checkmark	~				\checkmark	~					
GEF	1	~				✓	1					
JDT	1	~			\checkmark	✓	1		~			1
Mylyn	1	~	~	~	\checkmark	\checkmark	1	\checkmark	~	~	\checkmark	
Web Tools		~					1				\checkmark	
Linux Tools			\checkmark	~				\checkmark				
Java EE Tools		~					1					
XML Tools	1	~			~		1	\checkmark				
RSE		1	1	~			1	\checkmark				
EclipseLink		1					1			1		
PDE		1			~	✓	1		~			~
Datatools		1					1					
CDT			~	~				~				
BIRT							1					
GMF						✓						
РТР								\checkmark				
MDT						✓						
Scout									✓			
Jubula										~		
RAP					✓							
WindowBuilder	1											
Maven	~											

ICT

.

Constraints Between Features

356,352 possible products

Product Line Verification

How do we gain confidence that <u>any valid product</u> works?

ICT

. . .

SINTEF

Faulty Features

Unit tests may find faults inside a single feature.

- n test suites required for a product line with n features.
- What about faulty cooperation between features?
 - What if they interact incorrectly?

Interaction Faults

2-wise interaction fault

- reproducible by including 2 specific features
- the others do not matter

ICT

Interaction Faults

3-wise interaction fault

- reproducible by including 3 specific features
- the others do not matter

ICT

Empirics Show:

Kuhn et al. 2004:

Most bugs can be attributed to the interaction of a few features.

Covering Arrays

Mathematical property:

Only a few products needed to cover all simple interactions

Feature\Product	123456789101112
EclipseIDE	XXXXXXXXXXXXX
Team	XX - XXXXXX - X
CVS	XX - XX - X - X
CVS_Over_SSH	X XX - X - X
CVS_Over_SSH2	XX - X - X
SVN	XX - XXX - XXX
Subversive	X X X
Subclipse	- X XX XX
Subclipse_1_4_x	- X X X
Subclipse_1_6_x	X X
GIT	X XX - X X
EclipseFileSystem	XXXXXXXXXXXXXX
Local	XXXXXXXXXXXXX
Zip	- X X X X X

Other examples (pair-wise testing):

- For the "e-shop product line" with 287 features: 21 products
- For the Linux kernel with almost 7,000 features: 480 products

Combinatorial Interaction Testing (CIT)

— scalability issue

- 1. Generate a covering array «
 - Can be reused until the feature model is changed
- 2. Build each product
- 3. Apply a single system testing technique to each product
- Note: CIT was originally intended for single system testing
 - Covering arrays over input instead of interactions.

Feature\Product	1	2	3	4	5	6	7	8	9	10	11	12
EclipseIDE	X	X	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Team	X	Χ	-	Х	Х	Х	Х	Х	Х	х	-	Х
CVS	\mathbf{X}	Χ	-	Х	Х	-	Х	-	Х	-	-	-
CVS_Over_SSH	X	-	-	Х	Х	-	Х	-	Х	-	-	-
CVS_Over_SSH2		-	-	Х	Х	-	Х	-	Х	-	-	-
SVN	\mathbf{X}	Χ	-	Х	Х	Х	-	Х	Х	х	-	-
Subversive	X	-	-	Х	-	-	-	Х	-	-	-	-
Subclipse	- 2	Χ	-	-	Х	Х	-	-	Х	х	-	-
Subclipse_1_4_x	- 2	Χ	-	-	Х	-	-	-	-	х	-	-
Subclipse_1_6_x		-	-	-	-	Х	-	-	Х	-	-	-
GIT	X	-	-	-	Х	Х	-	Х	-	-	-	Х
EclipseFileSystem	\mathbf{X}	X	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Local	\mathbf{X}	X	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Zip	- 2	X	Х	Х	-	-	-	Х	Х	-	-	-

Background

Our MODELS 2011 paper concludes:

- Covering array generation is tractable in practice.
 - Difficult to satisfy FMs imply no products to sell, which is absurd.
- An efficient algorithm was not provided.
 - 2-wise testing limit: about 500 features
 - 3-wise testing limit: about 200 features
- An efficient algorithm is contributed in this paper.
 - 2-wise testing
 - Now works for the Linux Kernel feature model (6888 features)
 - 3-wise testing
 - Now works for the eCos feature model (1244 features)
 - (An optimized C/C++ implementation + some good hardware should work even for the Linux Kernel feature model.)

Overview of the Algorithm

Implementation Supports

- Simple XML Feature Models (SXFM)
- GUI DSL
- DIMACS
- CVL (Proposed OMG standard)

CSV-file

Groundwork

Data Structures

- a = (feature, included) an assignment
- EclipseIDE

 Team

 EclipseFileSystem

 CVS

 SVN

 GIT

 Local

 Zip

 CVS_Over_SSH

 Subclipse

 CVS_Over_SSH2

 Subclipse_1_4_x

 Subclipse_1_6_x
- $e = \{a_1, a_2, ..., a_t\} a t$ -set a set of t assignments
- T_t the set of all t-sets
- I_t the set of all invalid t-sets
- U_t the set of all valid t-sets (the "universe")
- C configuration a set of assignments, one for each feature
- $CA_t \{C_1, C_2, ..., C_x\} a$ Covering Array of strength t

Equations

■ $|T_t| = 2^t \binom{f}{t}$, i.e. 95 million pair-wise interactions for the Linux kernel

- Empirically, $|I_t| \ll |U_t|$
- $CA_{t-1} \subseteq CA_t$, thus, generating CA_{t-1} before CA_t is an option.

Not parallel

SINTEF

Compared to Other Tools

- ICPL our new algorithm
- CASA Simulated annealing algorithm by Garvin et al.
- MoSo-Polite algorithm by Oster et al.
- IPOG algorithm by Lei et al.
- Experiment Machine
 - Could execute 6 threads in parallel
 - 32 GiB RAM

Time Taken to Generate

Statistic estimates

• The *c* in $O(f^c)$ where *f* is the number of features

Size of Covering Arrays

Large Feature Models

Feature Model\keys	Features	Constraints (CNF clauses)	SAT time (ms)	1-wise size	1-wise time (s)	2-wise size	2-wise time (s)	3-wise size	3-wise time (s)
2.6.28.6-icse $11.dimacs$	6,888	187,193	125	25	89	480	33,702	n/a	n/a
freebsd-icse11.dimacs	1,396	$17,\!352$	18	9	10	77	240	*78	*2,540
ecos-icse11.dimacs	1,244	2,768	12	6	2	63	185	*64	*973
Eshop-fm.xml	287	22	5	3	0.16	21	5	108	457

ICT

.

Summary

Our contribution

- A scalable algorithm for t-wise (1-3) covering array generation
- An empirical evaluation and comparison
- Implementation available
 - The implementation is available as open source (EPL)
 - Experiments are reproducible
- All the data is available
 - All 28,500 measurements available for the paper's resource website + charts and summaries

