Testing Product Lines of Industrial Size:
Advancements in Combinatorial Interaction Testing

Doctoral Dissertation by

Martin Fagereng Johansen

Submitted to the Faculty of Mathematics and Natural Sciences at the
University of Oslo in partial fulfillment of the requirements for the degree
Philosophiae Doctor (PhD) in Computer Science

July 2013

Contents

Abstract ix
Acknowledgments Xi
List of Original Publications xiii

I Overview 1
1 Introduction 3
1.1 Contributions 4

1.2 Overview of the Industrial Cases 6
1.2.1 TheEclipseIDEs 6

1.2.2 TOMRA’s Reverse Vending Machines (RVMs) 8

1.2.3 ABB’sSafetyModules o oL 8

1.2.4 Finale’s Financial Reporting Systems 9

1.2.5 Additional Studies L 9

1.3 Structure of the Thesis 9

2 Background and Related Work 11
2.1 Background: Product Line Engineering 11
2.1.1 FeatureModels 11

Basic Feature Models 12

2.1.2 Approaches to Product Line Engineering 13
Preprocessors L 13
Feature-Oriented Programming 14

Components, Frameworks and Plug-ins 14

Orthogonal Variability Modeling (OVM) 14

Common Variability Language (CVL) 15

Delta-Oriented Programming 18

DeltaModeling 18

Aspect-Oriented Programming 19

2.2 Background: Testing 20
221 TheTestProcess 20

222 V-Model 21

223 UnitTesting o o e e e e e 21

il

v

2.2.4 Model-based Testing
2.2.5 RegressionTesting
2.2.6 Category Partition(CP)
2.3 Related Work: Product Line Testing
231 OVerviewo e e

Contra-SPL-philosophies
Reusable Component Testing
Feature Interaction
Model-based SPL Testing
Reuse e
Subset-Heuristics e
2.3.2 Product Line Use case Test Optimization (PLUTO)
Product Line Use Cases (PLUCs)

UsingCPonPLUCs
2.3.3 Scenario-based Test Case Derivation (ScenTED)
2.3.4 Combinatorial Interaction Testing (CIT)
Covering Arrays e e e e e

2.3.5 Customizable Activity Diagrams, Decision Tables, ... (CADeT)

2.3.6 Model-driven Software Product Line Testing (MoSo-PoLiTe)

2.3.77 Incremental Testing
2.4 Related Work: Algorithms for Covering Array Generation

241 TPOG s
242 MoSo-PoLiTe
243 CASA . .

24.4 Other Algorithms

Contributions
3.1 Overview and Relation to the State of the Art
3.2 Generation of Covering Arrays from Large Feature Models
3.2.1 Difficulty of Covering Array Generation
SPLE-SATisEasy
Covering Array Generation is Feasible
3.2.2 Scalable t-wise Covering Array Generation
323 Consolidations e
3.3 Optimized Testing in the Presence of Homogeneous Abstraction Layers

3.3.1 Description of the Technique

3.3.2 Application to Finale’s Systems

3.3.3 Application to the Eclipse IDEs

3.4 Market-Focused Testing based on Weighted Sub-Product line Models
3.4.1 Weighted Sub-Product Line Models

3.4.2 Algorithms Based on These Models
Weighted t-sets

Weighted Covering Array Generation
Weight Coverageo

343
344

Incremental Evolution L.
Application to TOMRA’SRVMs
Application to the Eclipse IDEs

3.5 Agile and Automatic Software Product Line Testing

3.5.1
352
353

354
3.55
3.5.6

Challenges in Need of an Answer
Testing Interactions using Tests for Features
Evaluation of Previous Techniques
Reusable Component Testing — Prosand Cons
Combinatorial Interaction Testing — Prosand Cons
The Automatic CIT Technique
Application to the Eclipse IDEs
Application to ABB’s Safety Modules

3.6 Tool Support and Integration of Achievements

4 Discussion

4.1 Limitations and Threats to Validity
42 FutureWork L

4.2.1
422

423

424

4.2.5

5 Conclusion
5.1 Results

Empirical Investigations
Complex ProductLines
Mixed Hardware and Software Product Lines
Mixed-Variability Systems
High Commonality, Few Products
Optimized Distribution of Test Cases
Product Line Engineering,
Distributed Variability Specifications
Utilizing Implementation Information
Design Principles and SPL Testing
Exploiting Version Information
Algorithms
Further Improvements of ICPL
Upperbound for ICPL,
Extracting Basic Feature Models
Evolving Covering Arrays o v i i i
Engineering
Using Virtual Machines
Full Testing of the Eclipse IDEs

5.2 Evaluation e

Bibliography

67
67
70
70
70
71
71
71
72
72
72
72
73
73
73
73
74
74
74
75
75
75

77
77
78

81

II Research Papers 95
6 Overview of Research Papers 97
7 Paper 1: Properties of Realistic Feature Models Make Combinatorial Testing of
Product Lines Feasible 101
Background 104
The Case for Tractable t-wise Covering Array Generation 107
Performance of Chvatal’s Algorithm for Covering Array Generation 109
Discussion e e e e 114
8 Paper 2: An Algorithm for Generating t-wise Covering Arrays from Large Feature
Models 119
Background and Related Work o Lo 122
The Basic Algorithm L 123
The New Algorithm: ICPL 124
Results and Comparison 126
Threats to Validity e 129
Future Work 129
9 Paper 3: Bow Tie Testing: A Testing Pattern for Product Lines 131
Background and Motivating Example 0oL 134
The Bow Tie Structure e e e 136
Pattern: Bow Tie Testing 137
Restructuring to Enable the Application of the Pattern 142
Similar Patterns 143
10 Paper 4: Generating Better Partial Covering Arrays by Modeling Weights on Sub-
Product Lines 147
Background and Related Work 151
Weighted Combinatorial Interaction Testing 154
Industrial Application: TOMRA 157
Applicability to the Eclipse IDEs 162
11 Paper 5: A Technique for Agile and Automatic Interaction Testing for Product
Lines 165
Background and Related Work oo oo 168
Proposed Technique 171
Evaluation with Two Applications and Results 174
Benefits and Limitations L. 179
III Appendices 183
A Resource Pages for Papers 185
Resource Page for Paper 1 oo 186

vi

Resource Page for Paper2 188

Resource Page for Paper3 192
Resource Page for Paper4 193
Resource Page for Paper5 oo 197
Algorithms Based on Weighted Sub-Product Line Models 201
B.1 SomeNew Terms 201
B.2 Calculating Weights 201
B.3 Generating a Weighted Covering Array 203
B.4 Generating Improvement Suggestionso 204
Details for Comparisons 207
Technical About the Tools 211
D.1 Version History e 211
D.2 Architecture 211
D.2.1 Feature Model Formats 213
D.2.2 Configuration Set Formats 213
D.2.3 Weighted Sub-Product Line Formats 214
D24 Versions 214
D.2.5 Overview of Algorithms and Object Structures 215
D3 UserManual e 215
D.3.1 Analysis e 216
D.3.2 Generating Covering Arrays 218
D.3.3 Extending Towards a Covering Array 218
D.3.4 Improving a Partial Covering Array 219
D.3.5 Automatic CIT: Eclipse-Based Product Lines 220
D.3.6 Automatic CIT: CVL Based Product Lines 222
Details on the Eclipse Case Study 223
E.1 Technical About Eclipse v3.7.0 (Indigo) 223
E.2 Contributed Artifacts 225
E.3 Details on Automatic CITof Eclipse 225
E.3.1 Feature Models and Covering Arrays 227
E.3.2 Implementation with the Eclipse Platform’s Plug-in System 228
E.3.3 Bindings Between Feature Names and System Artifacts 229
E.3.4 AutomaticBuilding oo o 229
E.3.5 Bindings Between Feature Names and Test Suites 230

vii

Abstract

Due to varying demands by customers, some software systems need to be configurable and
need to have optional features. Customers then configure their system according to their special
needs and select the features they need. A problem the developers of such systems face is the
possibility of latent faults awakened by some of its set-ups. A system used by thousands, if not
by millions, cannot fail for many before it becomes a major problem for the developers. Indeed,
if many systems fail, the general view of the quality of the system might be beyond repair. For
example, the Eclipse IDEs are popular software systems; they are also highly customizable.
There are probably tens of thousands of unique set-ups of the Eclipse IDEs in use.

This is one example of product line development, and the field that studies the construction
and development of product lines is product line engineering. One way of gaining confidence in
the quality of a product line—and any set-ups of it—is through testing. Product line testing, the
strategic exercising of the product line in order to gain confidence in the quality of the product
line and any configuration of it, is the subject of this thesis.

The strategy followed today with documented results is reusable component testing, the
testing of the product line’s common parts in isolation: If a common part fails in isolation
because of an internal fault, it will likely cause failures in any product of which it is a part.
Testing something in isolation will not, naturally, rule out interaction faults between these parts.

Combinatorial interaction testing (CIT) can test interactions and is—as of today—the tech-
nique closest to being realistically applicable in industrial settings. This technique is the starting
point of the contributions of this thesis. CIT starts by sampling some products of the product
line. The products are selected such that all combinations of a few features are in at least one
of the products. This selection criterion is such that faults are more likely to show up in these
products than in randomly selected products. As executable systems, they can be tested.

One significant problem with CIT is the lack of an efficient algorithm for the selection of
products. The existing algorithms scale insufficiently for the larger product lines. This effec-
tively rules it out in industrial settings. A contribution of this thesis is an algorithm (called ICPL)
that can perform the selection process even for product lines of industrial size. A preliminary
analysis of the problem was a necessary prior contribution contributed before the algorithm
could be developed. These two contributions taken as a whole provides an efficient algorithm
for this one bottle-neck of the application of CIT.

Having a scalable algorithm for selection enables the efficient application of CIT. To estab-
lish and demonstrate the usefulness of CIT, three advancements of CIT with applications were
contributed.

Firstly, a common situation with product lines is portability across various hardware archi-
tectures, operating systems, database systems, etc. One construct that deals effectively with

iX

such situations is a homogeneous abstraction layer. It provides a uniform way of accessing
these differing systems. Usually, only one implementation of a homogeneous abstraction layer
can be present in a product. This deteriorates the performance of CIT. The selection criterion
used by CIT is to strategically select simple combinations of features. Only being allowed to
activate one and one feature is limiting to the algorithms. It was noticed that products differing
only in their implementation of homogeneous abstraction layers can be tested using the same
test suite. This enables a voting oracle or a gold standard oracle to be set up. This contribution
thus turns the aforementioned problem into a strength.

Secondly, the selection criterion of CIT ensures all simple interactions are exercised. In
some cases, this leads to redundant testing. A product line’s market situation might exclude
large classes of feature combinations or indicate then some combinations are more common
than others. These things can be captured in a weighted sub-product line model, which, along
with associated algorithms, is another contribution of this thesis.

Thirdly, one way to fully automate the application of CIT is to create the test cases before
testing and then strategically allocate and automatically run those test cases in each application
of CIT. Such a technique and a full application of it on the Eclipse IDEs using its existing test
cases is also a contribution of this thesis.

In summary, this thesis contributes an algorithm that enables the application of CIT in indus-
trial settings. Further, three advancements of CIT with applications were contributed to advance
and demonstrate CIT as a product line testing technique.

Acknowledgments

This work has been conducted as a part of the Norwegian VERDE project funded by the Re-
search Council of Norway. The Norwegian VERDE project participated in the international
VERDE project ITEA 2 - ip8020. The international VERDE is a project within the ITEA 2 -
Eureka framework.

First of all, T would like to thank my two supervisors @ystein Haugen and Franck Fleurey;
they were naturally the closest cooperators during my PhD work on all issues. They provided
me with the guidance I needed to get safely through this process, they were always available to
answer my questions and for a good discussion. I could not have done it without their valuable
guidance.

I'have during the PhD studies been employed by SINTEF ICT as a research fellow at the ini-
tially named Department of Cooperative and Trusted Systems later renamed to the Department
of Networked Systems and Services. I owe my thanks to the research director Bjgrn Skjellaug
and all the colleagues for providing a very pleasant and motivating work environment.

I would like to thank Anders Emil Olsen who, while working for TOMRA, introduced me
and SINTEEF to a highly interesting industrial case, the testing of TOMRA’s reverse vending
machines; it was not initially a part of the Norwegian VERDE project. It was a great experience
working together with TOMRA Verilab’s Anne Grete Eldegaard and Thorbjgrn Syversen on
this case study.

I also had the great opportunity to work together with Frank Mikalsen from Finale Systems
on the Finale case study, and primarily Erik Carlson, Jan Endresen and Tormod Wien from ABB
Corporate Research on the ABB case studies.

The VERDE project provided me with everything I wanted from a PhD. I got a firsthand
experience with both the national and international research communities, and I got the first-
hand experience of working together with people from three interesting companies on their
industrial cases. Each gave me invaluable experience and provided a great start of a research
career.

Last but not the least, I would like to thank my girlfriend Hilde Galleberg Johnsen for her
continuous support on all matters during the years of my PhD work.

xi

List of Original Publications

1. Martin Fagereng Johansen, @ystein Haugen, and Franck Fleurey, "Properties of Realistic
Feature Models Make Combinatorial Testing of Product Lines Feasible," Model Driven
Engineering Languages and Systems — 14th International Conference, MODELS 2011,
Wellington, New Zealand, October 16-21, 2011. Proceedings, Springer, 2011, p. 638.

2. Martin Fagereng Johansen, @ystein Haugen, and Franck Fleurey, "An Algorithm for Gen-
erating t-wise Covering Arrays from Large Feature Models," Software Product Lines —
16th International Conference, SPLC 2012, Salvador, Brazil, September 2—7, 2012. Pro-
ceedings — Volume 1, ACM, 2012, p. 46.

3. Martin Fagereng Johansen, @ystein Haugen, and Franck Fleurey, "Bow Tie Testing —
A Testing Pattern for Product Lines," Pattern Languages of Programs — 16th European
Conference, Proceedings, ACM, 2012, p. 9:1.

4. Martin Fagereng Johansen, @ystein Haugen, Franck Fleurey, Anne Grete Eldegard, and
Torbjgrn Syversen, "Generating Better Partial Covering Arrays by Modeling Weights on
Sub-Product Lines," Model Driven Engineering Languages and Systems — 15th Interna-
tional Conference, MODELS 2012, Innsbruck, Austria, September 30—October 5, 2012.
Proceedings, Springer, 2012, p. 269.

5. Martin Fagereng Johansen, @ystein Haugen, Franck Fleurey, Erik Carlson, Jan Endresen,
and Tormod Wien, "A Technique for Agile and Automatic Interaction Testing for Product
Lines," Testing Software and Systems — 24th IFIP International Conference, ICTSS 12,
Aalborg, Denmark, November 19-21, 2012. Proceedings, Springer, 2012, p. 39.

Xiii

Part I

Overview

Chapter 1
Introduction

“one element in the price of every
article is the cost of its verification.”
— Charles Babbage

One size does not always fit all; or one software system does not always fit all users. There are
many situations, however, where they almost fit all. In these cases it might be better to make
a configurable system, instead of several single systems. Indeed, the cost of single systems
can be decreased, and the efficiency of developing them can be greatly increased by making a
configurable system.

A company that produces, for example, t-shirts need to produce them of varying sizes for
obvious reasons, or with a varying color or motives. Still, much of the production of these
t-shirts is similar: They can use the same fabric, they can be dyed similarly and their motives
applied with the same equipment. This is surely more efficient than having a separate production
process for each kind of t-shirt.

A similar example could easily be mentioned for cars.

Historically, when products are offered in this manner, they were offered lined up, the cus-
tomer browsing the products to find one that specifically suits his or her needs; thus, the term
product line.

These notions were brought into software engineering; thus, the term software product lines.
Their development has been studied in the field of software product line engineering (SPLE).

To continue the t-shirt analogy, because t-shirts of various sizes, colors and motives are
made from the same fabric, dyes and motives, no one would be surprised to learn that several
t-shirts made with the same quality fabric all are of good quality with respect to the fabric. This
commonality, once verified, gives us a lot of information about the quality of the completed
t-shirts. In the same way, a wrongly mixed dye might cause all t-shirts colored with it to drasti-
cally fade when washed. Washing one t-shirt of each dye will give us a lot of information about
the other t-shirts colored with the same dyes.

The same analogy holds for software, but just how to gain confidence in the quality of any
product of a product line, remains an open question. How to use testing for quality assurance
of software product lines is the general problem of this thesis.

Testing the common parts out of which products are composed is already an established
practice. As with the t-shirts, this gives us some level of confidence in the composed products.

3

It does not, however, tell us about the interaction between the parts. Various techniques are
being researched to achieve this goal. Among the suggested techniques, this thesis advances
one particular technique, combinatorial interaction testing. This technique is to select a small
set of products such that each combination of ¢ options (typically 1, 2 or 3) occurs in at least one
of the products. For the t-shirts, it would mean producing t-shirts such that ever combination of,
for example, 2 features are in at least one t-shirt: every combination of color and motif, every
combination of motif and size, etc. These products are called the ¢-wise products. The t-wise
criterion ensures that interaction faults are significantly more likely to occur in these selected
products than in the same number of randomly selected products.

Counter-intuitively, this t-wise selection process is computationally expensive. It has even
been argued that the selection is so difficult that it will remain infeasible for practical purposes.
It is thus a bottle-neck in the application of combinatorial interaction testing. Contribution 1
and 2 of this thesis culminates in an algorithm that performs this selection efficiently enough to
make combinatorial interaction testing usable in practice.

Having resolved this bottle-neck, the utilization of combinatorial interaction testing in in-
dustrial settings still requires issues to be addressed. The existence of a scalable means of
selecting the products to test, however, opens up for and encourages further developments of
the technique. Three such developments are the further contributions of this thesis.

1.1 Contributions

The main contributions of this thesis all relate to the testing of product lines using combinatorial
interaction testing (CIT). Figure 1.1 shows the CIT testing process with the five contributions
of this thesis marked as 1-5. The general technique of using CIT to test product lines has been
studied for some time [42]. It starts with three assets, two of which are ubiquitous in software
projects: Asset B is the implementation of a software system, and Asset C is test cases for
this system. Asset A is the specification of variability in the system. Software product line
engineering recommends maintaining a feature diagram, Asset A; however, this is not required
to maintain a product line. The act of configuring and building a system can be done manually
by domain experts using tooling not built on product line concepts. This was the case for all our
four industrial case studies. However, making a feature diagram (and the bindings) is neither
hard nor time consuming; it was done for all four case studies.

When Asset A-C are available, CIT can be carried out as follows: Configurations can be
sampled from the feature diagram; Asset D shows the sampled configurations out of the swarm
of possible configurations. Now, given the small number of selected configurations, it is feasible
to build all their corresponding products; the configurations are applied to the implementation
assets to produce a small number of actual, runnable products, Asset E, products P1-4. These
runnable products can then be tested using the test cases, Asset C, to produce a test report, Asset
F. Thus, with CIT, we start with the implementation and end up with a report on its quality.

The five papers, on which this thesis is based, present results that contribute to this process.
Their points of contribution are marked as 1-5 respectively on Figure 1.1.

Contributions 1, 2, 4) The contributions of Paper 1 [78], 2 [79] and 4 [82] all relate to the
sampling of configurations for testing purposes. The sampling stage was, prior to the contribu-

4

A) Feature Diagram B) Implementation Artefacts / Base Model C) Test Cases
Class1 Class2
n : Integer n : Integer
Lo notify()
Bindings T f Test Case
[a——
1
n=n+1; Class3
Y f.notify(); notify() : Integer
(1, 2, 4) |Sampling v
e Marking H@:ating
4 ©)
O o o =
-\0O 7N
(8 oo 4 8 Y Y Xy
O = L P1 P2 U0 Rq1
NG - Building »@——) 0@ Rq2
= = A7 Rg3
O - q
m| TN
o ¢ \8) P3 P4 0@ Rg4
D) Swarm of Possible E) Products to Test F) Test Report
(5) Configurations

AN
>

Figure 1.1: Contributions 1, 2, 3, 4 and 5 as Parts of a Whole Test Process

tions of this thesis, considered too computationally expensive to be done in industrial settings.
Indeed, no scalable algorithm or tool existed. The primary contribution of Paper 1 is an argu-
ment for why this stage is feasible in practice: Providing a single valid configuration of a feature
diagram is classified as NP-hard; however, having a product line without any products does not
make sense in practice. Thus, it is argued that realistic feature diagrams are easily configurable,
something that is backed up by a study of realistic feature models.

Paper 2 contributes a scalable algorithm (and tooling) for performing the sampling, thereby
consolidating the argument of Paper 1. The contributed algorithm, ICPL, was and still is the
fastest algorithm for CIT product sampling for product lines of industrial size, and the first to
be able to sample products from the largest available product lines.

Paper 4 also contributes to the sampling stage. A premise of CIT is that all possible simple
interactions must be exercised to evaluate the quality of a product line. However, depending on
the market of the product line, not all interactions can occur, or seldomly occur. A weighted
sub-product line model, a type of model contributed in Paper 4, allows the market situation to be
captured. Associated algorithms, also contributed, then enable the product sampling to take the
market situation into account to sample a smaller set of more market-relevant configurations.

Contribution 3) Often, the products of a product line need to work with different imple-
mentations of what is essentially the same thing: for example, a file system, network interface
or a database system. A homogeneous abstraction layer provides a uniform interface which the
product line assets can interact with instead of having one asset for each concrete implementa-
tion. There is, then, one implementation of the interface for each supported variant; for example,
for each variant of file systems, network interfaces or database systems. Each implementation

5

of the abstraction layer is mutually exclusive. One implementation of an abstraction layer suf-
fice in these situations. This causes the number of products selected in CIT product sampling
to increase because the sampling algorithm is restricted to choosing one implementation per
product where it elsewhere can strategically select multiple features.

The contribution of Paper 3 [80] is to turn this problem into a benefit: Such homogeneous
abstraction layers enable the reuse of existing test suites across many products selected in CIT
product sampling. This step is not necessary to perform CIT; it is noted in Figure 1.1 as a
marking of the configurations sampled. Those sampled configurations that only differ in the
implementation of homogeneous abstraction layers are marked. These marks can then be uti-
lized to make a voting oracle or a gold standard oracle as a part of the "Testing" stage.

Contribution 5) The contribution of Paper 5 [81] is noted in Figure 1.1 as an arrow going
from the upper-left to the lower-right. It is a technique to fully automate the application of CIT:
Given a feature diagram with bindings to the implementation and a set of test cases, it produces
a test report in one click.

Among other things, it required an automatic allocation of the existing test cases: This was
accomplished in the "Allocating" stage of Figure 1.1 by allocating the tests for the products
sampled to those in which the test cases’ required features were present.

A large-scale application this technique was done to the part of the Eclipse IDEs supported
by the Eclipse Project. It was and still is the largest documented and reproducible application
of a fully automatic testing of a software product line of industrial size.

Tool Support) All the contributions are supported by complete implementations in SPLCA-
Tool (Software Product Line Covering Array Tool) v0.3 and v0.4 and the Automatic CIT tool
suite, all written by the authors of this thesis and freely available as open source. Technical
details and a user manual for these tools are available as Appendix D.

1.2 Overview of the Industrial Cases

We applied parts of the contributions of this thesis to three commercial, industrial cases. In
addition, we included one open source system. This was for the purpose of being able to work
with the source code, publish the results and provide reproducible experiments. This open
source case study will be described first followed by the three commercial, industrial cases.

1.2.1 The Eclipse IDEs

Eclipse is a collection of integrated development environments (IDEs) developed by the Eclipse
Project [132]. An IDE is a program in which developers work with (primarily) software. They
usually have editors especially designed to write certain programming languages. The IDE does
various analyses in the background to give the users direct feedback or help when working. The
IDE also keeps the system built at any time so that the developer can try the system they are de-
veloping with a single click. There are usually several editors open at any time, each specialized
for their language or data format, each with help and guidance. All these tools are integrated
into a complete environment for development, thereby the name integrated development envi-
ronment.

runtime

(O Extension
Extension point

Figure 1.2: Overview of the Eclipse Plug-in System from [51]

The Eclipse IDEs are widely used, especially among Java developers. It is a competitor to
Microsoft’s Visual Studio which is primarily used for Windows and .NET programming in C++
and C#.

Eclipse is developed openly, is open source and free. The source code repositories and bug
tracking systems used by the developers are online [51].

Eclipse is developed by, among others, Erich Gamma, the main author of the influential first
book on design patterns [52]. Figure 1.2 shows Gamma’s own overview of the design and how
variability is supported in Eclipse. The Eclipse platform exposes extension-points that plug-ins
can implement. These plug-ins can then expose new extension points, etc. Eclipse has a large
community of plug-in developers.

Eclipse 1s also the recipient of the 2011 ACM Software System Award.

All of this made it a prime candidate as a case study for this thesis: It is open source, all
results found can be published and documented, and the experiments can be reproduced by
other researchers.

We studied v3.7.0 (Indigo) because it was the latest release in the summer of 2011. Twelve
products were, at the release, configured by the Eclipse Project and offered for download; users
were free to configure their own version of the IDE using the built-in tools of the basic platform.

Standard Widget
= Effident Portable

Controls

Native

Cross Platform

Standard | Widget

Cross Platform

I Native Controls =

= Efficient Portable
Cross Platform

Standard IHidget |j

Hative Controls

e
TR GE] 806 vuosx — %

Standard Widget
v Efficient Ponab\am
Cross Platform y
> Native Controls

Standard_ [widget [*]
= Efficient Portable

Cross Platform ||

Mative Controls [

[Totally ¥ Totally | Tetall Auesone Froary (Awesome) & Totally
(a) Windows (b) Linux, GTK (c¢) Linux, Motif (d) Mac (e) Mac, Photon

Figure 1.3: The Same Eclipse-based System Running in Different Windowing Systems (From
http://www.eclipse.org/swt/, May 2011)

http://www.eclipse.org/swt/

1.2.2 TOMRA'’s Reverse Vending Machines (RVMs)

TOMRA'’s reverse vending machines (RVMs) [156] handle the return of deposit beverage con-
tainers at retail stores such as supermarkets, convenience stores and gas stations. In Norway,
were TOMRA resides, customers are required by law to pay an amount for each container they
buy which is given back to them if they decide to return the container. In Norway, all vendors
that sell beverage containers are required by law to take them back and return the money upon
request.

! I ic & ' i
o OE = = J o=
= Voo i | &
i - \ '
B - !
Y « - s | — —
| Uno T-B3 Trisort T-EFHLE | T-B3 HLp
Cptional 53 Dual cabinel i : % Dual cabinet
Taueh edition 4
i TE3HCp

Single cabinet

Figure 1.4: Several Variants of TOMRA RVMs

Figure 1.5: Behind the Front of TOMRA RVMs

The RVMs are delivered all over the world, and the market is expanding. However, indi-
vidual market requirements and the needs of TOMRA’s customers within the different markets
can vary significantly. TOMRA'’s reverse vending portfolio therefore offers a high degree of
flexibility in terms of how a specific installation is configured.

At TOMRA Verilab they are responsible for testing these machines. Their existing test setup
was a set of manually configured test products. These test products were tested using manually
written tests that were executed both automatically and manually.

1.2.3 ABB’s Safety Modules

ABB is a large international company working with power and automation technologies. One
of ABB’s divisions develops a device called a Safety Module [1].

The ABB Safety Module is a physical component that is used in, among other things, cranes,
conveyor belts and hoisting machines. Its task is to ensure safe reaction to problematic events,

8

Figure 1.6: The ABB Safety Module

such as the motor running too fast, or if a requested stop is not handled as required. It includes
various software configurations to adapt it to its particular use and safety requirements.

A simulated version of the ABB Safety Module was built—independently of the work in
this thesis—for experimenting with modeling tools and their interoperability. It is this version
of the ABB Safety Module which testing is reported in this thesis.

1.2.4 Finale’s Financial Reporting Systems

Finale Systems AS is a provider of software for financial reporting and tax returns. Their
portfolio consists of nine main products that automate many tasks or subtasks in the reporting
of accounting data to the public authorities [4]. For example, according to Finale, approximately
6,300 auditors and accountants use one of their systems to produce 130,000 annual settlements.

Their nine products defer many configuration options to users, making the number of pos-
sible configurations high. Companies use a wide range of accounting systems that Finale’s
systems need to interact with. They interact with these systems though a homogeneous ab-
straction layer. This abstraction layer is implemented concretely for each specific accounting
system.

1.2.5 Additional Studies

In addition to these four case studies, 19 realistic feature models were gathered from research
and industry; they are listed in Table 1.1. They include three large feature models extracted
from three large systems by She et al. 2011 [141]: the Linux kernel, FreeBSD and eCos. Only
the feature models of these studies were used, and they were used as is.

Four realistic feature models were made for each of our industrial case studies, but these
were not included in some experiments to remain unbiased.

These 19 feature models were used in Contribution 1, the analysis of the covering array
generation from realistic feature models, and in Contribution 2, the development of an algorithm
for covering array generation.

1.3 Structure of the Thesis

The Faculty of Mathematics and Natural Sciences at the University of Oslo recommends that a
dissertation is presented either as a monograph or as a collection of research papers. We have
chosen the latter.

Table 1.1: Models and Sources

System Name Model File Name Source

X86 Linux kernel 2.6.28.6 2.6.28.6-icsel 1.dimacs [141]

Part of FreeBSD kernel 8.0.0 freebsd-icsel1.dimacs [141]

eCos 3.0 1386pc ecos-icsel1.dimacs [141]

e-Shop Eshop-fm.xml [95]

Violet, graphical model editor Violet.m http://sourceforge.net/
projects/violet/

Berkeley DB Berkeley.m http://www.oracle.com/

us/products/database/
berkeley-db/index.html

Arcade Game Maker Pedagogical Prod-
uct Line

arcade_game_pl_fm.xml

http://www.sei.cmu.edu/
productlines/ppl/

Graph Product Line

Graph-product-line-fm.xml

[103]

Graph Product Line Nr. 4

Gg4.m

an extended version of the Graph
Product line from [103]

Smart home smart_home_fm.xml [165]
TightVNC Remote Desktop Software TightVNC.m http://www.tightvnc.com/
AHEAD Tool Suite (ATS) Product Line | Apl.m [157]

Fame DBMS

fame_dbms_fm.xml

http://fame-dbms.org/

Connector

connector_fm.xml

a tutorial [163]

Simple stack data structure

stack_fm.xml

a tutorial [163]

Simple search engine REAL-FM-12.xml [105]
Simple movie system movies_app_fm.xml [122]
Simple aircraft aircraft_fm.xml a tutorial [163]
Simple automobile car_fm.xml [166]

The thesis is based on a collection of five research papers and is structured into two main
parts plus an appendix. Part I provides the context and an overall view of the work. Part II
contains the collection of research papers. The purpose of Part I is to explain the overall context
of the results presented in the research papers and to explain how they fit together. Part I is
organized into the following chapters:

* Chapter 1 - Introduction introduces the problem, contributions and industrial cases.

* Chapter 2 - Background and Related Work presents the relevant background and other
work related to the contributions of this thesis.

Chapter 3 - Contributions presents an overview of the contributions and how they fit
together.

Chapter 4 - Discussion presents threats to validity and provides ideas for future work.
Chapter 5 - Conclusion presents the conclusions of this thesis.

Each research paper in Part II is meant to be self-contained and can be read independently of the
others. The papers therefore overlap to some extent with regard to explanations and definitions
of the basic terminology. We recommend that the papers are read in the order they appear in the
thesis.

* Chapter 6 - Overview of Research Papers is the first chapter of Part II. It provides
publication details and a summary of each research paper.

Part III contains a series of appendices. The interested readers are referred to them throughout
Part I for additional details.

10

http://sourceforge.net/projects/violet/
http://sourceforge.net/projects/violet/
http://www.oracle.com/us/products/database/berkeley-db/index.html
http://www.oracle.com/us/products/database/berkeley-db/index.html
http://www.oracle.com/us/products/database/berkeley-db/index.html
http://www.sei.cmu.edu/productlines/ppl/
http://www.sei.cmu.edu/productlines/ppl/
http://www.tightvnc.com/
http://fame-dbms.org/

Chapter 2

Background and Related Work

This chapter introduces the relevant background on product line engineering and testing, in
Section 2.1 and 2.2, respectively, followed by related work: First, the related work in product
line testing is presented in Section 2.3. Then, because the contributions of this thesis is based
on an efficient algorithm for t-wise covering array generation (called ICPL), other algorithms
for the same problem are presented, discussed and related to it in detail in Section 2.4.

2.1 Background: Product Line Engineering

A product line [125] is a collection of systems with a considerable amount of hardware and/or
code in common. The primary motivation for structuring systems as a product line is to allow
customers to have a system tailored for their purpose and needs, while still avoiding redundancy
of hardware and/or code. It is common for customers to have conflicting requirements. In that
case, it is not even possible to ship one system for all customers.

The Eclipse products [132] can be seen as a software product line. When Eclipse v3.7.0
was released, the Eclipse website listed 12 products on their download page'. These products
share many components, but all components are not offered together as one single product. The
reason is that the download would be unnecessary large, since, for example, a C++ systems
programmer usually does not need to use the PHP-related features. It would also bloat the
system by giving the user many unnecessary alternatives when, for example, creating a new
project. Some products contain early developer releases of some components, such as Eclipse
for modeling. Including these would compromise the stability for the other products.

2.1.1 Feature Models

One way to model the commonalities and differences in a product line is using a feature model
[86]. A feature model sets up the commonalities and differences of a product line in a tree such
that configuring the product line proceeds from the root of the tree.

Figure 2.1 is an example of a feature model for a subset of Eclipse. Proceeding from the root,
configuring the product line consists of making a decision for each node in the tree. Each node
represents a feature of the product line. The nature of this decision is modeled as a decoration

"http://eclipse.org/downloads/

11

http://eclipse.org/downloads/

EclipseSPL

WindowingSystem oS Hardware Team EclipseFileSystem
Win32| | GTK | [Motif | Carbon | Cocoa | [0S Win32| Linux | [MacosX | |x86 | |x86 64| cvs SVN| | GIT | Local||Zp |

Additional Constraints:

Carbon A MacOSX A x86 v . -
Cocoa A MacOSX A (x86 v xB86_64) v CVS_Over_SSH| | Subversive | Subclipse
GTK A Linux A (x86 v x86_64) v

Motif A Linux A x86 v
Win32 A OS.Win32 A (x86 v x86_64) CVS_Over_SSH2| Subclipse_1_4_x | [Subclipse_1_6_x|

Figure 2.1: Feature model for a subset of Eclipse

on the edges going from a node to one or more nodes. For example, in Figure 2.1, one has to
choose one windowing system which one wants Eclipse to run under. This is modeled as an
empty semi-circle on the outgoing edges. When choosing a team functionality provider, at least
one or all can be chosen. This is modeled as a filled semi-circle. The team functionality itself is
marked with an empty circle. This means that that feature is optional. A filled circle means that
the feature is mandatory. The feature model is configured from the root, and a feature can only
be included when the preceding feature is included. For example, supporting CVS over SSH
requires that one has CVS.

The parts that can be different in the products of a product line are usually called its variabil-
ity. One particular product in the product line might be called a variant or simply a product and
is specified by a configuration of the feature model. Such a configuration consists of specifying
whether each feature is included or not.

Basic Feature Models

The contributions of this thesis use basic feature models. There are other kinds of feature models
with more complex mechanisms. The work presented in this thesis can still apply meaningfully
to more complex feature modeling mechanisms, but then a basic feature model must first be
extracted for the purpose of testing.

Basic feature models are widely known and were originally introduced in Kang 1990 [86].
Batory 2005 [11] showed that a basic feature model can easily be converted to a propositional
formula, and this is precisely the formalism of feature modeling that will be used in this thesis.

A basic feature model [139] has of a set of n features, {r, f2, f3, ..., f»}. The first feature is
a special feature called the root feature; it must always be included in a valid configuration. The
other features may or may not be included depending on what the feature model specifies. The
means of specifying variability in a basic feature model is listed in Table 2.1. The first column
shows the most popular feature diagram notation, described in the second column. The last
column shows the respective semantics as a propositional constraint. The P in the last row is for
writing a propositional constraint below the tree structure. The primitives of this propositional
constraint must be the feature names in the tree.

To convert a feature diagram into a propositional constraint, iterate through the diagram and
convert each part into the corresponding propositional constraint. Combine them with A. What
are valid solutions of the feature diagram are also valid solutions to the resulting propositional
constraint and vice versa.

12

Table 2.1: Overview of Basic Feature Models [139]

Diagram Description Semantics
r is the root r
fr
fe fe s an optional sub-feature of f, fe= 1
fr
Ie fe 1s a mandatory sub-feature of f, fee
fr
fa fb " "
fay--., [y are "or" sub-features of f, (faV---Vi)e f,
fr
fa | 7 fb .
fa,- - fp are alternative sub-features of f,, | ((foV---V fo) < fp)A
/\i<j —(fi A fy)
P Propositional formula P P

2.1.2 Approaches to Product Line Engineering

Several approaches are in use or have been proposed for dealing with and working with the
variability of a product line.

Preprocessors

Preprocessors can be used for product line engineering. When a feature model has been con-
figured, the included and excluded features can be mapped to symbols that are issued to, for
example, the C preprocessor. It will then conditionally compile source code according to how
these symbols are set.

For example, if a feature called X is mapped to a symbol X Feature issued to the build
system, the code inside the ifdefs gets included in the product:

#ifdef XFeature

£Q0;
#endif

This is done in all systems that use the kbuild build system [127]. kbuild is used for many
open source product lines [13]. It takes its name from the Linux Kernel which it is used to
configure and build (the Kernel Build system); the Linux Kernel is one of the largest product
lines openly available.

13

Feature-Oriented Programming

Feature-oriented programming (FOP) [7] is the general idea that a product can be built by
adding separately developed features to a base system. For example, with object-oriented pro-
gramming, a feature can be developed as a new sub-class which refines a class by adding new
fields, overriding existing methods or adding new methods. These are ways of refining a base
program in a step-wise manner [10] to include more and more features, which may be defined
as increments in functionality.

Components, Frameworks and Plug-ins

A product line can be developed by bundling features as components or plug-ins that are in-
stalled into a framework. Feature names can be mapped to fully qualified component names,
as is done in the Eclipse Plug-in System [132]. To derive a product from a configuration of a
feature model, start with the minimum set of required components (or the base framework) and
then simply install the components whose corresponding feature is set to included in the feature
model. Thus, you end up with the product that corresponds with the configuration.

When a product line is developed in this way, the components are units which may be
executed by another program, such as a unit test. Such components can be tested as is, and no
generation or configuration is necessarily needed in order to exercise a part of the product line.

Orthogonal Variability Modeling (OVM)

Where product line approaches like preprocessors or component-based approaches require the
embedding of variability in the system implementation itself, various approaches propose hav-
ing the variability modeled orthogonally to the implementation.

An approach for implementing variability orthogonally is the orthogonal variability model
(OVM) of Pohl et al. 2005 [125]. Figure 2.2 shows a feature diagram in OVM syntax. A feature
model in the popular syntax that captures the basic meaning of this is shown in Figure 2.3.
In OVM, variation points are differentiated from variants. A variation point (tagged VP) is
something that can vary, and a variant (tagged V) is what it can vary as. These tags are not
included in Figure 2.3. Figure 2.3 also have two nodes without names. This is because these

Intrusion Security Door
Detection Package Locks
PN /N , ~N
- T~o << XN
1 Z AN / AN
Camera Motion Cullet . Fingerprint
Erveillance ﬂensors Etection rBasw mvanced ﬂeypad ncanner

A : A A

A requires v v } i

.....

Figure 2.2: Orthogonal Variability Model — From [125]

14

‘ Intrusion_Detection | ‘Security_Package | Door_Locks

ZN

‘ Cullect_Detection | ‘ Basic | ‘ Advanced | ‘ Keypad | ‘ Fingerprint_Scanner |

Basic = Motion_Sensors A Keypad

‘ Camera_Surveillance | ‘ Motion_Sensors | Advanced = Camera_Surveillance A Fingerprint_Scanner

Figure 2.3: FODA Syntax Equivalent of Figure 2.2

Sequence Diagram Variability Diagram

House Security

Owner System
T

VP

Fingerprint
Scanner

approach the front door

request authentication

enter the PIN

touch fingerprint sensor

v

permit entrance

LU) /A5 AN R AN
S
%

Figure 2.4: Orthogonal Variability Model and the Bindings to the Model — From [125]

nodes are unnecessary in OVM syntax, and therefore do not need to be named. Figure 2.3 also
has textual propositional constraints instead of the arrows used in OVM.

Figure 2.4 shows how OVM can be used to model variability. The sequence diagram on
the left is a part of the implementation or the test model of a system. The variants on the right
side are linked to a segment of the model. This is what makes OVM orthogonal, in that the
variation is modeled separately and not as a part of the implementation or test model. As for
product realization, if the keypad is chosen, for example, the "enter pin"-transition remains
in the sequence diagram, and, as the fingerprint scanner is therefore not included, the "touch
fingerprint sensor"-transition is removed.

Common Variability Language (CVL)

OVM covered the general idea of an orthogonal approach, but it did not specify how this is to
be achieved technically. One suggestion was provided by the Common Variability Language
(CVL). It was initially proposed in Haugen et al. 2008 [69], and its most recent version is
documented in OMG 2012 [71] as a part of the standardization process of CVL being carried

15

out by OMG. Figure 2.5 shows the same feature diagram as in Figure 2.2 and Figure 2.3, but
this time in CVL syntax.

A feature diagram is in CVL called a Variability Specification Tree (VSpec tree). Instead of
the semi-circle in the popular syntax, it uses cardinalities on a triangle placed under a feature.
The top-node in CVL is an instance of a Configurable Unit (a concept not further discussed
here). It is unnamed in this example. The constraints are written in the textual Basic Constraint
Language (BCL), a proposed constraint language as a part of CVL.

CVL realizes the idea proposed in OVM and shown in Figure 2.4 by requiring models to be
implemented according to MOF [111] stored as XMI [112]. Specifically, implementations of
CVL target Ecore, the Eclipse version of the Essential MOF (EMOF) standard. CVL supports
defining fragments of models that are instances of an Ecore meta-model.

For example, Eclipse has defined an Ecore meta-model of UML2. We might use this to
make a UML2 model of the sequence diagram shown in Figure 2.4. We can create fragments
of the two highlighted areas around the transitions. We can then make a fragment substitution
that substitutes the transition with an empty fragment when one of the features is not included.
Such fragment substitutions are linked with the features in a CVL feature model.

Figure 2.6 shows how fragments are modeled and how fragment substitutions are performed
in CVL. A fragment is modeled by recording its boundary elements. Then, any other fragment
with matching boundary elements can replace it. In Figure 2.6, the fragment in the lower-left
diagram is replaced by the fragment in the upper-left diagram. The result of the substitution is
the model in the right diagram.

Because version 1 of CVL was used in one of the contributions of this thesis, its diagram
notation will be briefly explained. Figure 2.7 shows part of a feature diagram in CVL 1 notation.
In this diagram, the gray squares are the features. The text in the top part of each feature is the
feature name. The lower part contains a list of the contained placement fragment (prefixed with
ared square), replacement fragments (prefixed with a blue square with red fragments inside) and
constraints (prefixed with a star symbol). For example, the constraint in the Level3 feature
is an implication. The red squares below some of the features are the associated fragment
substitutions.

CVL 1 allows the modeling of optional features using a yellow oval with "0..1" indicating
that zero or one of the following feature can be chosen. Features can be marked as alternative

: Configurable Uni

(Camera Surveillance
and Fingerprint
Scanner)

Advanced implies \

Basic implies (Motion
Sensors and Keypad)

[Cullet Detectior) [Basic) [Advanced) [Keypad) [FingerprintScannelJ

/ X1

[Camera Surveillance) [Motion Sensors]

Figure 2.5: CVL VSpec Tree — Yields the Same Configurations as Figure 2.2 and 2.3

16

(T N
Base Model Placement Fragrient _

g al_A :

d1:D

(Resolved Model)
e E LT e
\ Fragment e a2:Al> g:G ™
. . f—— 1 “
Substitution d1:D K 1 \
- N Ty 1 !
Model Fragment Library \ F ! !
Replacement Fraginent . $ h:H S
k:K '@ a2 A > G R AN SR
1701 11 g N . S eeaaa- .o
;! ‘.l i1:1
‘ 1 1\Z :
10 1 1\ H \ J
d2:D f:F > h:H
e 1 I
i2:1
\ J

Figure 2.6: Fragment Substitution — From the CVL 1.2 User Guide [151]

+ SafetyDrive
[d

e

¥ durmmy

tc_placement
tc sms place...

.
+ SafetyModule
* ST
+ Communication... * SafetyFunctions @ Leval T —
. _
¥ speedreading... ¥ Level3startUp
speedReading... 4 Level-=SBC
sensorPlacem...
Level2Startl
i speedReadingSu.. Il AddLevel3StartUp

a removeSensor

Lilh AddLevel2Starty... * Other

@

- StopingFuncti... * Limit Values

Figure 2.7: Part of Feature Diagram of the ABB Safety Module in CVL 1 Feature Diagram
Notation

17

using an empty triangle below the parent feature. The partly filled triangle indicates that one
or more features must be included. (The ellipsis are not a part of CVL; they indicate where the
diagram has been cut.)

Delta-Oriented Programming

Delta-Oriented Programming (DOP) [134, 135] is a textual language for writing feature mod-
ules. It is also orthogonal to the implementation. Figure 2.8a shows an example core program
of an SPL with two features Print and Lit.

They are implemented in Java within the core. Figure 2.8b shows two feature modules,
Eval and Add. When executed against the core in Figure 2.8a, these deltas will add their
features to the core. For example, executing DEval will add the feature Eval by adding the
method eval to the interface Exp and an implementation to the class implementing it Lit.

In general, deltas can be constructed as shown in Figure 2.8c. It is possible to remove,
add and modify classes and interfaces. Both methods and fields can be added, removed and
renamed.
core Print, Lit {

interface Exp { void print(); }

class Lit implements Exp {
int value;
Lit(int n) { value=n; }
void print() { System.out.print(value); }

}
(a) Example Core Modules

delta DEval when Eval { delta DAdd when Add {

modifies interface Exp { adds int eval(); } adds class Add implements Exp {

modifies class Lit { Exp exprl; Exp expr2;

adds int eval() { return value; } Add(Exp a, Exp b) { exprl=a; expr2=b; }

}

} }

(b) Example Delta Modules

delta <name>> [after <delta names>] when <application condition> {
removes <class or interface name>
adds class <name> <standard Java class>
adds interface <name> <standard Java interface>
modifies interface <name> { <remove, add, rename method header clauses> }
modifies class <name> { <remove, add, rename field clauses>> <remove, add, rename method clauses> }

(c) General Structure of Deltas in DOP

Figure 2.8: Example of Delta-oriented Programming — From [134]

Delta Modeling

Delta Modeling [33,64,133,136] is a formal modeling approach for feature oriented programing
(FOP). It is also orthogonal to the implementation.

Figure 2.9a shows an example core model. Figure 2.9b shows an example Delta Model
(A-model) that when applied to the core model in Figure 2.9a yields the model in Figure 2.9c.

18

=]| =]

Inventory] Cash Desk
(a) Example Core Model
 Credit Card >
[E] [+]
In;_ E Bank E
Cash Desk Bank

(b) Example Delta Model (A-Model)

Inv Bank
81w 5] o] 5
Inventory Cash Desk Bank

(c) Resulting Model From Applying the Delta Model in Figure 2.9b to the Core Model in Figure 2.9a

Figure 2.9: Example of Delta Modeling — From [133]

In the delta model in Figure 2.9b we can see that three model elements have been annotated
with a symbol with a gray background. These show what these elements will do when run
against a base model. The asterisk (*) means modification; the plus (+) means addition. This
explains why in Figure 2.9c Bank got added, the Cash Desk component got modified by
adding an arrow to Bank.

Delta modeling also supports removal of model elements.

One important difference between CVL and Delta Modeling is that CVL deals with model
fragments by capturing the boundaries around fragments. Delta modeling, on the other hand,
adds, removes or modifies individual elements.

Aspect-Oriented Programming

Aspect-Oriented Programming (AOP) [88] can be used for product line engineering [164].
Aspect-oriented programming was introduced based on the observation that certain concerns
cross-cuts implementations. A typical example is logging. Logging will typically be spread
around most of the source code instead of being isolated in a single component. It would be
better if logging was separated out, so that it could be considered and worked with as an isolated
unit instead of being scattered around in all the other units.

Aspects solve this problem as follows. By using pattern-matching techniques, logging calls
could, for example, be added in the beginning of all method definitions. An aspect is a construct
that, for example, requests all methods to do a call to a logging function at its beginning.

The compilation process for aspect-oriented programs involves a weaving step. This is, for
example, to add the logging calls, or to weave them, into other functions.

Similarly, an aspect could be used to make features for an existing program. The new
features could be programmed as an aspect to be woven into the core program on inclusion.
The weaving will then result in the new feature becoming a part of the program. Aspects are,
for this reason, also orthogonal to the implementation.

19

2.2 Background: Testing

The computer is fast, reliable and tireless in performing its tasks. Automatic testing is the idea
that the computer should not only run programs to solve certain tasks quickly; it should also be
used to run programs and check the answers given for correctness.

Automatic testing is in principle simple. We have a program P that can be invoked with
input [, to produce output O,. An automatic test is simply a second program () that invokes P
with input 7, and verifies that the output O, given by the program is correct either by a direct
match, or that it fulfills some criteria.

2.2.1 The Test Process

Figure 2.10 shows the general process that is followed when using testing for quality assurance
of a system. First, tests are created somehow. They are then executed against the system. The
oracle verifies that the resulting behavior of the system is correct. If some of the tests fail, then
the faults must be located and fixed. Further tests might be needed to help localizing the faults.
Eventually, all tests will pass. It should then be asked whether there are sufficient tests to meet
quality requirements. This can be expressed as a coverage criterion of some kind. If it is not
met, further tests must be created to meet it. Otherwise, the testing process finishes.

The basic way to do testing is to write the tests manually, select input manually and select
when the output is correct or not manually.

(1)

» Create Tests [«
\ 4
Execute Tests [« Correct Errors
No A
Yes @
Enough Tests? Result Correct?
Oracle
(4)
Coverage Criterion
Yes
Localize Faults) () }
Diagnostics
Y
Yes

Stop Testing

No

Figure 2.10: The Testing Process

20

2.2.2 V-Model

There are various testing activities that can be done during system development. These are
usually modeled in the V-Model [83], Figure 2.11. Development chronologically proceeds

Requirements Specificatior\\ //System test
I

Preliminary Design ntegration Testing

Detailed Design Unit Testing

Coding/Static Analysis
Figure 2.11: The V-Model

along the arrows. (Note that with agile development practices, the V-model is done as a whole
in iterations.) First requirements are specified for some functionality. These requirements can
be tested with system tests. Testing that the system behaves according to the requirements
is the end goal. The requirements are used as the basis of preliminary designs that are then
refined into detailed designs. Corresponding to these two stages are integration testing and unit
testing. They are coarse grained and fine grained testing, respectively. Finally, the functionality
is coded. During coding, static analysis should be used to check for errors during coding. After
the functionality has been coded, the system can be unit tested, integration tested and, finally,
tested using the system tests.
With test driven development (TDD) [12], tests are written before coding.

2.2.3 Unit Testing

One widely used form of testing is unit testing. Unit testing is to isolate units of a program, be
it classes or methods, and then invoke them without any other unit being invoked.

Often, units have dependencies. These dependencies are then mocked. Mocking is to create
a new class or method that behaves as one would expect them to in the situation set up in the
unit test. Thus, when a failure occurs, it can be attributed to a fault in the unit, because nothing
but the unit was invoked.

2.2.4 Model-based Testing

Model-based testing in general is testing a system by manually creating a test model and then
generating tests from this model according to some criterion [159]. These tests are then executed
against the actual system.

For example, say a software system has been implemented in a textual language such as
C. Say the system is reactive; it receives and sends messages through an interface. Say it
implements the controller software for a turnstile. A turnstile is a barrier typically used in
public transportation systems: A customer is allowed past the barrier when he or she shows a
ticket. In this example, however, the customer pays directly to the machine to pass.

21

Push Coin

Push Coin

Figure 2.12: Test Model Example — State Machine of Turnstile Controller (Image
from https://en.wikipedia.org/wiki/File:Turnstile_state_machine_
colored.svg)

For such a system, a test model might be implemented as a state machine. Figure 2.12
shows a state machine for the high-level behavior of the turnstile. Initially, it is locked. When
the customer puts a coin into it, it unlocks. The customer walks through by pushing the barrier.
When the customer has passed, the barrier locks to be used by the next customer.

Various coverage criteria can be defined for a test model. In general, the effort required for
exhaustive testing increases exponentially with the system complexity. Thus, exhaustive testing
is infeasible in general. A coverage criterion allows generating fewer tests that somehow covers
some aspect of the test model.

For example, for the test model in Figure 2.12, one of the simpler coverage criteria is the
all-states criterion. It is fulfilled by visiting all states at least once. For example, it is fulfilled
by putting a coin into the machine and pushing the barrier to verify that it is unlocked.

A more complex criterion is the all-transitions criterion. It is fulfilled by performing all
transitions at least once: for example, by inserting a coin, then inserting another coin, pushing
the barrier and, finally, pushing the barrier again. This sequence will visit all transitions of
Figure 2.12.

Various other coverage criteria exists in the model-based testing literature [159].

2.2.5 Regression Testing

For testing in general, reuse is employed to minimize testing effort. For single system testing,
when a system is changed, old test cases and test results can be reused in order to minimize
testing of the new system. This is known as Regression Testing [108]. IEEE 1990 [74] defines
regression testing as

"Selective retesting of a system or component to verify that modifications have not
caused unintended effects and that the system or components still complies with its
specified requirements."

The basic challenge of regression testing is how to reuse the old test cases and test results.
Some tests can be reused directly, but some need to be modified. Determining which need to be
modified is one challenge; automatically modifying them is another challenge.

22

https://en.wikipedia.org/wiki/File:Turnstile_state_machine_colored.svg
https://en.wikipedia.org/wiki/File:Turnstile_state_machine_colored.svg

2.2.6 Category Partition (CP)

Category Partition (CP) was introduced as a general-purpose, black-box test design technique
[18] by Ostrand et al. 1988 [121]. It is a technique meant to be done manually; it is unsuitable
for (full) automation because it involves considerations of the intended functionality of the
system under test.

CP is for designing a test suite for a method m. Step 1 is to manually identify the functions
(fi1,-.., fn) implemented by the method m. Step 2 is to manually identify all the input and
output parameters (i, ..., %,; 01, ..., 0,) of each function. For example, the input parameters of
a method on an object typically include the object itself; thus, the object must be in the list of
input parameters.

It is on these parameters the categories (from the name, category partition) are defined
manually. This is Step 3. A category is a subset of the parameter values that cause a particular
behavior in the output. The notion of categories is similar to the notion of equivalence classes
[108].

It is these categories that are manually partitioned (again from the name, category partition)
into choices of values. This is Step 4. Step 5 is to identify constraints between the choices. This
will rule out some of the choices.

Step 6 is to enumerate all choice combinations. The cross-product will serve this purpose,
but might yield a lot of combinations. Finally, Step 7 is to define the expected output values for
each combination of input values either manually or using an oracle.

Having completed these steps results in a test suite that exercises the method m.

2.3 Related Work: Product Line Testing

The related work for product line testing is covered in three parts. Section 2.3.1 contains an
overview of product line testing techniques classified by approach. The following six subsec-
tions contain descriptions of six approaches for product line testing: PLUTO, ScenTED, CIT,
CADeT, MoSo-PoLiTe and Incremental Testing. Finally, Section 2.4 contains a detailed de-
scription of three algorithms for covering array generation (IPOG, MoSo-PoLiTe and CASA)
with a detailed comparison with ICPL, an algorithm contributed in this thesis. This is followed
by a short discussion of eight other algorithms for covering array generation (and then 13 further
algorithms are listed but not discussed).

2.3.1 Overview

Product line testing approaches can roughly be divided into four categories: 1) approaches not
utilizing product line assets, 2) model-based techniques, 3) reuse techniques based on regression
testing and 4) subset heuristics.

Reusable component testing (RCT) is a simple and widely used technique for product line
testing. It does not fit into the four categories and does not test feature interactions. Thus,
reusable component testing and feature interactions are discussed before the product line testing
techniques that utilize product line assets in order to test the product lines including feature
interactions.

23

Contra-SPL-philosophies

Pohl et al. 2005 [125] discuss two techniques for testing product lines that do not utilize product
line assets. These are the Brute Force Strategy (BFS) and the Pure Application Strategy (PAS).

The Brute Force Strategy (BFS) lives up to its name. The strategy is merely to produce all
products of a product line and then test each of them. This strategy is infeasible for any product
line but the very smallest. This is because the number of products generally grows exponentially
with the number of features in a product line.

The Pure Application Strategy (PAS) is simply to not test anything before a certain product is
requested. When a product is requested, this product is built and tested from scratch. Although
this strategy is easy to use and feasible, it does not provide validation of products before they
are requested. It would be good to somehow utilize the product line assets in order to ensure to
some extent that the products work when they are requested and built. This is the basic concern
of the product line testing technique discussed below.

Reusable Component Testing

Reusable Component Testing (RCT) can be used when a product line is built out of components
that are composed into products. These reused components can be tested in isolation. If they
function correctly, we have more confidence they will not fail because of an internal fault. The
main drawback of this technique is, of course, that it does not test feature interactions.

Reusable component testing is actively used in industry [77]. It is a simple technique that
scales well, and that can easily be applied today without any major training or special software.
As it exercises commonalities in a product line it will find some of the errors early.

In our Johansen et al. [77], we noted that several companies reported having partly used
reusable component testing in experience reports: Dialect Solutions reported having used it
to test a product line of Internet payment gateway infrastructure products [144]. Testo AG
reported having used it to test their product line of portable measurement devices for industry
and emission business [53]. Philips Medical Systems reported having used it to test a product
line of imaging equipment used to support medical diagnosis and intervention [140]. Ganesan
et al. 2012 [54] is a report on the test practices at NASA for testing their Core Flight Software
System (CFS) product line. They report that the chief testing done on this system is reusable
component testing.

Feature Interaction

As just mentioned, testing one feature in isolation, as is the case for, for example, reusable
component testing, does not test whether the feature interacts correctly with other features.
Two features are said to interact if their influence each other in some way [101].

Kistner et al. 2009 [87] addressed the optional feature problem, a problem related to feature
interactions. They mention an example where two features are mutually optional, but where
one is implemented differently depending on whether the other is included. One example they
consider is a database system with the feature ACID and the feature STATISTIC. The latter
feature will include the statistic "committed transactions per second" that only makes sense if
the feature ACID is included because it facilitates transactions.

24

They note that feature interactions can cause unexpected behavior for certain combinations
of features. An often mentioned example in telecommunications is the two features call waiting
and call forwarding. When both are active, which is to take an incoming call?

Batory et al. 2011 [8] proposed that whenever two features f and g are included in a product,
not only are they composed, but so is their interaction (denoted f#g¢). In other words, including
two features is not only f - g (- being the composition operator) but (f#g) - g - f.

How frequent are feature interactions? n features may be combined in O(2") ways; how-
ever, according to Liu et al. 2006 [101] experience suggests that interactions among features are
sparse. That is, according to experience, most features do not interact. In other words, (f#g¢)
is () for most f and g. The experience is from, among other sources, the telecommunication
system industry. Kistner et al. 2009 [87] agrees with Liu et al. in that there usually are more
feature interactions than features.

There are techniques proposed in literature that may be able to test feature interactions
effectively. Three of these are model-based techniques, reuse-based techniques and subset-
heuristics. They are discussed in the following subsections.

They are combined with each other and with other techniques in attempts to efficiently test
product lines. Some of these techniques are discussed in Section 2.3.2 onwards.

Model-based SPL Testing

For model-based product line testing, many different models have been proposed used.

Bertolino and Gnesi 2003 [15], with their PLUTO method for product line testing, propose
modeling the use cases of the product line with extended type of Cockburn’s use cases [34], a
textual format for writing use cases. They suggest extending them with variability information.
They call this new type of use case Product Line Use Case, or PLUC.

Several methods propose modeling product line behavior using UML activity diagrams an-
notated with variability information. Olimpiew 2008 [113] used them as a part of the CADeT
method; Reuys et al. 2003 [130] used them as a part of the ScenTED method together with
UML interaction diagrams and UML use case diagrams, variability was modeled with the Or-
thogonal Variability Model (OVM) [125]; and Hartmann et al. 2004 [67] proposed using UML
activity diagrams as a part of their method. They annotate parts of the activity diagrams with
product names, and not with features. Thus, their method is limited to situations where all the
products are known up front.

State machines have been used for a long time in software engineering. Several propose
using them for modeling product line behavior. Cichos et al. 2011 [32] proposed creating
a single state machine containing all behaviors of all products, called a 150% model. When
instantiated according to a configuration, the 150% model yields a 100% model, the behavior
of one product.

Lochau et al. 2012 and Lity et al. 2012 [100, 102] also proposed modeling the behavior
as a state machine, but instead of modeling the union of all product behaviors, they suggested
capturing the difference between pairs of state machines using delta modeling. Oster et al.
2011b [120] used state machine models to build a 150% model as a part of their MoSo-PoLiTe
method.

Svendsen et al. 2011 [148, 149] modeled train stations using the domain specific language

25

Table 2.2: Model-based Techniques .

! Product selection is done after test selection and not before.

2 Products are selected using CIT before testing.

3 Products are selected with any technique (or selected for delivery) before they are tested.

4 Model Coverage means any coverage criterion relevant for the test model might be employed.
® As long as a basic feature model can be extracted for testing purposes

Technique Test Model Variability Mechanism | PL Test Generation
PLUTO Cockburn’s Use-Cases | Annotations Cp!

ScenTED Activity Diagrams OVM Model Coverage'
CADeT Activity Diagrams PLUS CIT? + Model Coverage*
Svendsen et al. | DSLs, Alloy CVL Any? + BMC and Manual
MoSo-PoLiTe | State Machines pure::variants CIT? + Model Coverage*
Lochau et al. State Machines Delta Modeling Any® + Model Coverage*
This thesis n/a Any® CIT? + Manual

Train Control Language (TCL) [150]. They used the Common Variability Language (CVL) [69]
to model the difference between two or more train stations. They used Alloy [75] to model the
semantics of TCL and CVL.

Based on the respective models, each technique has an associated test generation method.
As a part of their PLUTO method, Bertolino and Gnesi 2004 [16] proposed using the Category
Partition (CP) method [121] (explained in Section 2.3.2). For the CADeT method, Olimpiew
2008 [113] used combinatorial selection techniques (explained in Section 2.3.4) to select prod-
ucts to test. For the ScenTED method, Stricker et al. 2010 [147] proposed an enhanced, spe-
cialized test generation algorithms for ScenTED to further avoid redundancies in testing.

Table 2.2 shows six model-based testing techniques. The last row of the table shows the
technique proposed in this thesis. Both PLUTO and ScenTED selects products to test after
having designed the test cases. CADeT and MoSo-PoLiTe uses CIT. The work by Svendsen et
al. and Lochau et al. on incremental testing supports any selection of products, either manually
or by CIT or other methods. They then propose using incremental testing to minimize the effort
on testing these selected products. Svendsen et al. use bounded model checking (BMC) with
Alloy. Lochau et al. propose new algorithms based on Delta Modeling to minimize testing.
They propose generating test cases using coverage criteria for state machines.

The technique proposed in this thesis is not a model-based technique. It can use any vari-
ability mechanism as long at a basic feature model can be extracted for testing purposes. From
this basic feature model, the products are selected automatically using covering array generation
from CIT. The test cases are proposed made manually.

A recent survey of model-based testing techniques for product lines is provided by Oster et
al. 2010b [114].

Reuse

Regression testing techniques can be adapted for product lines. Because any two products p,, py
of a product line are similar, p, can be seen as a development of p,. If we then test p,, we can
optimize the testing of p, using regression testing techniques.

26

This is product line testing because when delivering product p,,, the testing of p; to p,_1
will minimize the effort needed to testing p,,.

Engstrom et al. 2010 [50] surveyed the use of regression testing technique for product line
testing.

Uzuncaova et al. 2008 and 2010 [160, 161] proposed using regression testing techniques to
minimize test generation time for the next product.

Svendsen et al. 2011a [148] proposed using regression testing techniques to determine
whether a test needs to be re-executed for the next product. Svendsen et al. 2011b [149]
proposed using regression testing techniques to minimize the time to verify a property of the
next product.

Lochau et al. 2012 and Lity et al. 2012 [100, 102] proposed using regression testing tech-
niques to minimize the number of test cases needed to fulfill a model-based coverage criterion
for the next product. Dukaczewski et al. 2013 [49] proposed using regression testing techniques
on annotated textual requirements, as they are more common than test models.

Subset-Heuristics

A product line has surely been thoroughly tested if all products are executed for all possible
inputs. The idea of subset-heuristics is to select a subset of the products or of the inputs such
that the testing remains (almost) as good as testing all products with all inputs. Some of the
challenges of subset heuristics are 1) being able to generate a small subset, 2) being able to gen-
erate the subset within a reasonable time and 3) knowing how good a subset selection technique
is.

Combinatorial Interaction Testing (CIT) can be used to both generate a subset of products
and generate a subset of inputs for testing. The technique has been known for a long time, and
is discussed and developed extensively. Cohen et al. 1994 [35] is one of the earlier papers that
introduced an algorithm for generating subsets. The related work will be discussed in depth
later. CIT handles constraints between features in a product line and between input variables
for system testing.

Kuhn et al. 2004 [94] investigated the bug reports for several large systems. They found
that most bugs can be reproduced by setting a combination of a few parameters (and no more
than six). Thus, they indicate that most bugs can be detected by exercising any combination of
a few parameters.

Generating a subset that covers all simple combinations is classified as NP-hard. Algorithms
finding non-optimal subsets still keep advancing. Some of these algorithms are discussed later.
A contribution of this thesis is an argument for why the subset selection of products of a product
line is quick in practice. Another contribution is an algorithm that is currently the fastest algo-
rithm for selecting a subset of products for testing. Both of these contributions relate to product
subset selection for testing, and only indirectly to program input subset selection.

There are subset heuristic techniques that are not based on CIT. Kim et al. 2011 [89] use
static analysis to determine a reduced set of products that are relevant for a test. This reduction
lessens the combinations of products that need to be tested given a certain test. Kolb 2003 [92]
proposed using risk analysis to identify a subset of products to test. Scheidemann 2008 [137],
proposed a technique that selects products such that requirements are covered.

27

Oster et al. 2009 [118] proposed a method where feature models (FMs) and classification
trees (CT) are combined to a Feature Model for Testing (FMT). Classification trees are used in
the CT-method [62] for software testing. The FMT model can be used with classification tree
tools such as CTE [3] to generate a subset of system tests that also exercise the product line.

2.3.2 Product Line Use case Test Optimization (PLUTO)

The Product Line Use case Test Optimization PLUTO is “a test methodology for product fami-
lies” [14]. The PLUTO method was first introduced by Bertolino and Gnesi 2003 [15] and later
in Bertolino and Gnesi 2004 [16] and Bertolino et al. 2006 [14].

PLUTO, a model-based technique, uses Cockburn’s use cases [34] extended with variabil-
ity information. These enhanced use cases are called Product Line Use Cases, or PLUCs.
Cockburn’s use cases are represented in a textual notation with natural language. Variability
information is added as textual annotations.

A modified version of the category partition method (CP) is applied to the product line use
cases (PLUCs) in order to design a product line test suite. Before explaining how this is done,
product line use cases are explained.

Product Line Use Cases (PLUCs)

Figure 2.13 shows a product line use case (PLUC). There are two main sections: before and
after "PL Variability Features", both written in natural language. Above is a use case. This use
case has been annotated with variability information that is defined below. This particular use
case is for the call answer feature of a mobile phone, written on the first line. The goal in this
use case is to answer an incoming call on a mobile phone. The goal is annotated with "[CAOQ]".
Below, we can see that there are three alternatives for this annotation, Model 1-3.

When this and the other annotations are specified, we get a Product Use Cases (PUCs) [14].
This must be done manually. The "[CAO]" annotation can be directly replaced by one of the
model names, making for example "Goal: answer an incoming call on a Model 1 mobile phone".

Step 2 of the main success scenario is less simple. If the selected phone model is Model 1,
then a value for "[CA2]" must also be specified. If, say, "a" is chosen, then "[CA1]" becomes
"Procedure B". Thus, Step 2 of the main success scenario becomes "2. The system establishes
the connection by following Procedure B."

The PLUC in Figure 2.13 yields 5 different PUCs: for (CAO, CAl, CA2), we can have
0, A, a), (1, B, a), (1, C, b), (2, B, a) and (2, C, b). Not all of these necessarily need to be
instantiated for testing. This depends on the application of category partition to PLUCs.

Using CP on PLUCs

PLUTO involves using CP on PLUCs to produce a product line test suite. CP is first applied
normally to the use case. Then, after having selected categories and choices, the products
corresponding to the choices made are selected. It might be the case that each test gets its
unique product, or it might be the case that all tests are run on a single product. This depends
on what is in the use case. One consequence of this is that no more products are needed than
there are test cases. In PLUTO, product selection is a consequence of applying the CP method.

28

PLUC CallAnswer
Goal: answer an incoming call on a [CAO] mobile phone
Scope: the [CAO] mobile phone
Precondition:
Signal is available.
Mobile phone is switched on.
Trigger: incoming call
Primary actor: the user
Secondary actors: the {[CA0] mobile phone} (the system)
the mobile phone company

Main success scenario:
1. The user accepts the call by pressing the button "Accept".
2. The system establishes the connection by following the {[CAl]
appropriate} procedure.

Extensions:
la. The call is not accepted:
la.l. The user presses the button "Reject".
la.2. Scenario terminates.

PL Variability Features:
CAQ: Alternative:
0. Model O
1. Model 1 [CA2]
2. Model 2 [CA2]

CAl: Parametric:
case CAQ of:
0: Procedure A:
2.1 Connect caller and callee.
1 or 2:
if CA2 = a then Procedure B:
2.1 Interrupt the game.
2.2 Connect caller and callee.
if CA2 = b then Procedure C:
2.1 Save current game status.
2.2 Interrupt the current game.
2.3 Connect caller and callee.

CA2: Alternative:
a. Games are available; if interrupted, status is not saved.
b. Games are available; if interrupted, status is saved.

Figure 2.13: Example of Product Line Use Case (PLUC) (taken from [14] and fixed)

29

For example, ten test cases of the use case in Figure 2.13 might only need three different
products out of the five possibilities: e.g. (0, A, a), (1, B, a), and (2, C, b). This is likely, because
all the options of all three alternatives are present in one of the three. If an eleventh test case
runs through 1 and b (for the second and third option respectively) then, of course, a product
with those is needed also, making it four.

2.3.3 Scenario-based Test Case Derivation (ScenTED)

Scenario based TEst case Derivation (ScenTED) was first introduced in Kamsties et al. 2003b
[84]. It is “a solution for applying product line concepts to the testing process by providing
detailed guidelines on how to create generic test artifacts in domain engineering and how to
reuse these generic artifacts in application engineering” [131].

The idea of ScenTED is to create test assets in UML which can be reused after deriving
products, also modeled in UML with variability specified using an orthogonal variability model
(OVM). In order to achieve this, they start by creating UML use case scenarios—descriptions
of how to use the software—that includes variation points (Figure 2.14, Step A). These are
UML activity diagrams with variability information as annotated branches. From these they ex-
tract test-case scenarios—a selection of paths through the activity diagrams just described (Fig-
ure 2.14, Step B). These are modeled as UML interaction diagrams with variability information
as annotated messages. They suggest a branch coverage criterion, modified for variability, to
select good test cases from the activity diagram. These test-case scenarios get their variability
resolved to become tests for products (Figure 2.14, Step C).

Figure 2.15 shows the information model of ScenTED. Here we find the use case and test-
case scenarios described above. In addition there are the architecture scenarios and executable
test cases. The former are scenarios with interactions between components—and not just the
user and the system as is the case for use case scenarios. The latter are the test-case scenarios
including concrete data for the input and output values of the tests.

The arrows between the boxes in Figure 2.15 are traceability links. Traceability in this
context means that you can find your way to, for example, the use case from a particular use
case scenario. The system is, as can be seen from the figure, traceable all around.

A thorough presentation of ScenTED can be found in [131] which is also the primary ref-

Domain Engineering

I

[

Requirements Test Model :> Test Cases
(incl. Variability) (incl. Variability) (incl. Variability)
A) Creation / B) Derivation T L
Completion C) Binding of
Variability
N

.*"| Application Engineering (nth Product) 1L v
Application Engineering (1st Product) A

I V-

Figure 2.14: Main Activities and Artifacts of ScenTED — taken from [107]

30

| Requirements | | Architecture | Test | | Executable |
| Artifacts Do Artifacts P Artifacts o Artifacts i
Use Case Archltectu_re Test C?ase i Runtime
: t 1 |Configuration| Design Lo System !
Use Case i Architecture | Test Case Executable
Scenario Scenario Scenario P Test Case

Figure 2.15: ScenTED Information Model — taken from [131]

erence of this presentation of ScenTED. The ScenTED method was, prior to the primary refer-
ence, presented in [107], [129], [85] and [84]. The activity diagrams extended with variability
were presented earlier in [130].

Pohl and Metzger 2006 [126] is a short paper that discusses three challenges with SPL
testing and presents six principles which can be used to solve these challenges. The solutions
presented are compared against the ScenTED method where most of the principles are reported
to be addressed by ScenTED.

Reis et al. 2006 [128] presents an extension of ScenTED for performance testing called
ScenTED-PT. They explain how test assets for performance testing are derived and reused in
their extended method.

Stricker et al. 2010 [147] presents another extension of ScenTED called ScenTED-DF for
avoiding redundant testing.

2.3.4 Combinatorial Interaction Testing (CIT)

Combinatorial interaction testing [42] is an approach for performing interaction testing between
the features in a product line. The approach deals directly with a basic feature model to derive
a small subset of products which can then be tested using single-system testing techniques, of
which there are many good ones (see for example [18] or [83].)

The idea is to select a small set of products where the interaction faults are most likely to
occur. An important motivation for CIT is a paper by Kuhn et al. 2004 [94]. They investigated a
number of highly configurable industrial systems, and found that most of the bugs reported can
be attributed to a specific assignment of a few parameters. This means that by adjusting just a
few parameters, most bugs can be found. These empirical investigations apply to configuration
options also.

Figure 2.16a shows a feature model. If there is a fault in GIT that can be detected in any
product that contains this one feature, the fault is called a /-wise fault. In Figure 2.16b, however,
there is a fault in the interaction between GIT and Zip that can be detected in any product that
include these two features. This 2-wise fault is not a fault in either feature, but a fault in the
interaction between them. They do not interact correctly. Surely, if they never interact either
directly or indirectly, there can be no such fault, but in this case they can: The Zip feature
allows browsing a zip-file and editing its internals. The GIT feature is a source control system.

31

EclipselDE
EclipselDE EclipselDE

Team EclipseFileSystem

Team EclipseFileSystem Team EclipseFileSystem
sw | [erm|[L 7y
O O ocal
as s @ SV @ OCG /O\

Ccvs
(L /0\ <L CVS_Over_SSH || Subversive | | Subclipse
CVS_Over_SSH Subversive Subclipse CVS_Over_SSH Subclipse l\)
l /0\ L /O\ | [cvs_over_sshz([| subclipse_1_4_x | [Subcipse_1.6 x |

[cvs_over_ssH2 | | subclipse_1_4_x || Subcipse_1_6_x

CVS_Over_sSH2 | [Subclipse_1_4_x || Subclipse_1_6_x

(a) 1-wise fault (b) 2-wise fault (c) 3-wise fault

Figure 2.16: Examples of Feature Combinations Required to Reproduce a Fault

When the internals of a zip-file is changed, the GIT feature must mark it as changed and as a
candidate for a commit. Not doing this is an example of a 2-wise interaction fault between these
features. Figure 2.16c shows an example of combination of features triggering a 3-wise fault.
Similar arguments presented for 1-wise and 2-wise faults apply to 3-wise and higher types of
t-wise faults.

CIT for product lines starts by selecting a few products where all valid combinations of a
few features are present at least once. For example, we can select the subset of all possible
products where each pair of features is present. This includes the cases where both features are
present, when one is present, and when none of the two are present.

Table 2.3 shows the 22 products that must be tested to ensure that every pair-wise interaction
between the features in a sub-set of the Eclipse IDE, Figure 2.1, functions correctly. Each row
represents one feature, and every column represents one product. *X’ means that the feature is
included for the product, ’-* means that the feature is not included. Some features are included
for every product because they are core features, and some pairs are not covered because they
are invalid according to the feature model.

Testing every pair is called 2-wise festing, or pair-wise testing. This is a special case of
t-wise testing where t = 2. 1-wise coverage means that every feature is at least included and
excluded in one product, 3-wise coverage means that every combination of three features are
present, etc. For the Eclipse IDE example, 5, 22, 64 and 150 products are sufficient to achieve
1-wise, 2-wise, 3-wise and 4-wise coverage, respectively.

Kuhn et al. 2004 [94] indicated empirically that most bugs are found for 6-wise coverage,
and that for 1-wise one is likely to find on average around 50%, for 2-wise on average around
70%, and for 3-wise around 95%, etc. Thus, 3-wise testing is an important milestone for testing
non-critical product lines. Figure 2.17 shows these numbers are plotted in Kuhn et al. 2004 [94].
The FTFI Number is the number of test-parameters that had to be given a specific value to
reproduce a bug. The y-axis shows the percentage of bugs that could be attributed to such an
FTFI-number.

There is even more empirical support for CIT. Garvin and Cohen 2011 [57] did an ex-
ploratory study on two open source product lines. They extracted 28 faults that could be an-
alyzed, and which were configuration dependent. They found that three of these were true
interaction faults which require at least two specific features to be present in a product for the
fault to occur. Even though this number is low, they did experience that interaction testing also
improves feature-level testing, that testing for interaction faults exercised the features better.

32

Table 2.3: Pair-wise coverage of the feature model in Figure 2.1 the test suites numbered

Feature\Product 112(3|4|5(6|7|8(9|101 1{12|13(14115/16{17|18 19202122
EclipseSPL IXIXIXIX XX XXX X | X XXX X)X XXX XXX
WindowingSystem [XIXXIXIXIXXIXIX| X | X|X| X | X|X|X|X|X|X|X|X|X
Win32 -1-X - - X - - X - - - X - -] - X
GTK XXX - - - X - - X - - - -
Motif N EEIED(EIED (IS D 4 I I I N N I D¢ I e
Carbon S B) (Y O 1 B I D G IS I I IR D € I D € I I I I
Cocoa X -[-[-1--1-1-{--[-[-[X]-]-]-]-]-]-]|X|X]-
0OS IXIXIXIXXIXXXIX] X | X XXX X)X XXX XXX
0OS_Win32 =X - X - - X -] - - -1 X - -1-1- X
Linux X -- X - XX - | X - (X - (X -] - X - X -] - -
MacOSX X[-1 - X[-1-[-]-] - |X] - |X]- |- |X] - [X]|-[X]|X] -
Hardware IXIXIXIXIXIX XXX X | X XXX X)X XXX XXX
x86 X -1 - XX - - X - [X|X|X] - | - [X|X] - [X|X|-]-]-
x86_64 XX - - XX - X -] -] - 1 XX -] - (X -] - | XXX
Team -1-1- - - IXIXIXIX) X XXX X X X X X X XX X
CVS -1-1=1=1-1- -1 - - - - - XXX X X XX X
CVS_Over_SSH o I S Y 1 1 B S I I I I D 4D, 4D, .).). 4D, ¢
CVS_Over_SSH2 |-|-|-|-|-|-|-|-|-]-|-|-1-]-|-|-|X|X|X|X|X|X
SVN -1-1-1- - XIXIXIX) X X X X X X X - [XX XXX
Subversive -L=1=1=1- === - XX XXX - - - - - |- (X
Subclipse -1 - XIXIXIXIX - -] - -] - (X - | X XXX
Subclipse_1_4_x === 1- -1 - XXX -] -] - -1 X - -] -] IX] -
Subclipse_1_6_x == XX - - - - - - - -] - [XXX - -
GIT =111 - I - - - -] - XX - | XX - [X
EclipseFileSystem [XXXXXIXXXIX|X | X|X| X |X|X| X |X|X|X|X|X|X
Local XXX IXIXIXXIXIX] X | X XXX X)X XXX XXX
Zip - - - - - - X - - - -] - X - X

These observations strengthen the case for combinatorial interaction testing.

Steffens et al. 2012 [146] did an experiment at Danfoss Power Electronics. They tested the
Danfoss Automation Drive which has a total of 432 possible configurations. They generated a 2-
wise covering array of 57 products and compared the testing of it to the testing all 432 products.
This is possible because of the relatively small size of the product line. They mutated each
feature with a number a mutations and ran test suites for all products and the 2-wise covering
array. They found that 97.48% of the mutated faults are found with 2-wise coverage.

There are three main stages in the application of combinatorial interaction testing to a prod-
uct line. First, the feature model of the system must be made. Second, the subset of products
must be generated from the feature model for some coverage strength. Such a subset is called
a t-wise covering array for a coverage strength t. Lastly, a single system testing technique must
be selected and applied to each product in this covering array.

Covering Arrays

The set of products that must be tested in combinatorial interaction testing is called a covering
array, but what precisely are covering arrays? A formal description should clarify.

An assignment a is a pair (f,included), where f is a feature of a feature model F'M, and
included is a Boolean specifying whether f is included or not. A configuration, C, is a set
of assignments where all features in the feature model, /'M, have been given an assignment.

33

100

90 £ A

80 £ bl 4

70 ——2

60
4{ "\ Med. Devices

L
50 + . Browser

/,’ \ Senver
40 2 . NASA

Percent

30

20

10

1 2 3 4 i) 6
FTFI Number

Figure 2.17: Faults Attributed to Interactions - taken from [94]

A t-set is a set of ¢ assignments, {aj, as, ...}. The set of all t-sets of a feature model, F'M, is
denoted 7}, e.g. 11,715,153, The set of invalid t-sets is denoted [, e.g. I, I5, I5, The set
of valid t-sets is thus U; = T; \ I;. A covering array of strength ¢ is a set of configurations, C},
in which all valid t-sets, all t-sets in U,, are a subset of (or the same set as) at least one of the
configurations.

The generation of covering arrays is a topic of many publications. Nie and Leung 2011 [109]
is a recent survey of combinatorial testing. They state that their survey is the first complete and
systematic survey on this topic. They found 50 papers on the generation of covering arrays.

A detailed comparison between three leading algorithms and the algorithm contributed in
this thesis (ICPL) is provided in Section 2.4.

2.3.5 Customizable Activity Diagrams, Decision Tables, and Test specifi-
cations (CADeT)

The Customizable Activity Diagrams, Decision Tables, and Test Specifications (CADeT) method
was introduced by Olimpiew in [113] and is a "test design method that can be used to create
functional test specifications for SPLs".

There are four phases of CADeT: Phase I is to create activity diagrams from use cases.
The use cases have already been made as PLUS requirement models, introduced by Gomaa
et al 2005 [60]. Phase 1II is to create decision tables (as described by Binder 1999 [18]) and
test specifications from these activity diagrams. Phase III is to define and apply a feature-
based coverage criteria; CADeT proposes to use a combinatorial selection technique as used in
combinatorial interaction testing. Finally, Phase IV is to derive tests based on the decision table
and the test specifications.

34

2.3.6 Model-driven Software Product Line Testing (MoSo-PoLiTe)

Model-driven Software Product Line Testing (MoSo-PoLiTe) was introduced by Oster et al.
2009 [118] and further enhanced and developed later, including Oster et al. 2010 [117], Oster et
al. 2010b [114], Perrouin et al. 2011 [123], Oster et al. 2011 [119] and Oster et al. 2011b [120].

Oster 2012 [115] describes the state of the art of MoSo-PoLiTe as of 2012. An overview
of it can be seen in Figure 2.18. MoSo-PoLiTe is a model-based testing technique. It uses
combinatorial techniques to subset the products of a product line. These are then tested with
tests generated from a test-model. The method starts with a feature model and a test model.
The feature model is modeled using pure::variants (developed by pure::systems), and is seen
center-top in Figure 2.18. The test model is a union of behavior of all products, known as a
150% model. This behavior is modeled using Rational Rhapsody (developed by IBM) shown
in the top-right.

The variability modeled in the feature model is bound to the 150% model using pure::variants

2 & @ pure::variants @)
Plugin Rational Rhapsody
Feature Model Feature Model Reusable Test model of SPL
p::v for Rational 150/ Statechart
@m <i Rhapsody | @
Flattening
Import
Flat Feature Model —) Transformatl

Variant Models Test Models

, corresponds|
Parameter P! 100/ Statechart
Extraction <
100% Statechart

Flat Feature Model CSP &) _
Rhapsody
Subset ATG
Extractor

Test Suites

0 ﬁ EEEEE-
TR — E_F

Figure 2.18: MoSo-PoLiTe Overview — taken from [115]

List of Configurations Products

=

35

integration with Rational Rhapsody. This is shown with the two-way arrow between the feature
model and the 150% model.

First, a subset of products for testing is generated. This is shown as the left side. First, the
pure::variants feature model is parsed into an Eclipse Plug-in tool. Then, the MoSo-PoLiTe
covering array generation algorithm is applied. This algorithm is covered and discussed in
Section 2.4.2. This results in a list of configurations, shown in the lower-left.

These configurations are then imported back into pure::variants as feature model configura-
tions. This is shown as a black arrow going from the configurations and up into the center. This
results in the variant models. They can now be used to instantiate product test models, or 100%
model. This is shown on the right side. There are bindings between these product models and
the configurations.

Then the tests need to be generated. They are generated using the Rational Rhapsody Auto-
matic Test Generation (ATG). These test suites can then be executed on the products built from
the configurations, shown in the lower-center.

2.3.7 Incremental Testing

Say an organization provides products of a product line. When a new product is requested, this
product is thoroughly tested from scratch. Because this new product, being a product of the
product line, is similar to the previously tested products, it should be possible to significantly
reduce the effort of testing this new product. Incremental testing for product lines proposes to
reduce the effort significantly.

Incremental testing for product lines was first presented in Uzuncaova et al. 2008 [161]
based on Alloy [75] and AHEAD [9]. Later, Svendsen et al. 2011a [148] proposed basing
incremental testing on CVL [69], and Lochau et al. 2012 and Lity et al. 2012 [100, 102]
proposed basing incremental testing on delta modeling [33].

Figure 2.19, from the original paper by Uzuncaova et al. 2008 [161], depicts the basic idea
of incremental testing for product lines.

A company that organizes and offers products using a product line strategy wants to ensure
that all the utilized products are of high quality. The way this is proposed done with incremental
testing is as follows. sq is the formal specification of a product p,. This product, which can be
any product of the product line, is referred to as the base product or the core product.

Even though any product can in principle be chosen as the base product, some have noted
possible benefits of strategically selecting it. For example, Svendsen et al. 2010 [152] sug-

Figure 2.19: Incremental Testing as Described by [161]

36

gests selecting the base product such that the difference between it and any other product is
minimized.

A test case £ can be generated using test generator 7 from the specification sy of the product
po. Another product, say ps3, has a different specification s3. From s3 the test generator 7
generates the test ¢s.

Now, we can see p3 as a development from py. Thus, we have a relationship between product
line testing and regression testing [2]. Regression testing aims at minimizing the effort needed
to retest a product that has changed.

We can capture the change between the specification sy and s3 as A, and the change between
test tg and t3 as A,.

Uzuncaova et al. 2008 and 2010 [160, 161] proposed an algorithm 7’ that allows following a
different path. Instead of generating the test ¢3 from s3 using the test generator 7, they propose
generating A, from A, using the algorithm 7’. Then, by applying A, to ¢, we get t3. They
notice that this path takes less computational time than generating the test ¢3 from s3 using 7.

Uzuncaova et al. 2008 and 2010 [160, 161] used Alloy [75] to model the specifications s;
and AHEAD [9] for modeling the differences between the specifications, Ay, and to produce
the new specification based on the difference.

Svendsen et al. 2011a [148] addressed a different aspect of incremental testing. Their case
study was a product line of train stations. Train stations have rails, of course, and a lighting
system automatically organized by a software system. ABB, being the company in charge of
developing this software, tests each train station thoroughly from scratch.

Svendsen et al. proposed using incremental testing to lessen the effort of testing a second,
third, etc. train station by inferring which test cases needed to be rerun given that a previous,
similar train station had already been thoroughly tested. They had a DSL called the Train
Control Language (TCL) [150] in which the train stations were modeled. Instead of using
AHEAD as Uzuncaova et al., Svendsen et al. used the Common Variability Language (CVL)
[69] to capture the difference between two or more train stations.

As Uzuncaova et al., Svendsen et al. also used Alloy to model the semantics; in their case,
the semantics of TCL and CVL. They showed for their case study (to a limited extent) which
functionality was affected by a change from one station to another. Thus, if the first train station
had been thoroughly tested, they could tell (to a limited extent) which tests did and did not
need to be re-executed. The change of functionality was termed the semantic ripple effects of a
change of a product, in this case, a train station.

Svendsen et al. 2011b [149] addressed yet another different aspect of incremental testing.
If a property p of a train station ¢s; has been established to always hold for ¢s;, based on the
change from ¢s; to another product, say ¢ss, modeled in CVL, they showed (to a limited extent)
how to determine if that property also holds for the second product, ¢s,.

Lochau et al. 2012 and Lity et al. 2012 [100, 102] introduced incremental testing of product
lines based on delta modeling [33]. They address a different aspect of incremental testing than
Uzuncaova et al. and Svendsen et al. did.

Say an organization maintains a product line. They have one base product p that they have
tested with a test suite £s containing test cases {tc, tca, ..., tc, }. The test suite is generated from
the test model tm of the product p based on a coverage criterion C'. The coverage criterion C'is
captured as a set of test goals tg.

37

Because the base product was tested with test suite ¢s, the test plan ¢p for the core product p
simply is ¢s. This might not be the case for a second, third, etc. product of the product line.

When a second product needs testing, say product p’, the difference between the test assets
of p and p/, called ta and ta’ respectively, is captured as a tuple of deltas as follows:

5ta,ta’ = 5tm,tm’7 5tg,tg’7 5ts,ts’a 5tp,tp’

When constructing the test plan ¢p’ for the second product p/, the fact that the first product was
tested with ¢p can be taken into account to minimize tp'.

Lochau et al. 2012 and Lity et al. 2012 [100, 102] proposed modeling the test model as a
state machine and the test cases as paths in this state machine. Thus, the test goals are elements
of the state machine and the test suite is the set of all test cases satisfying these goals.

The deltas are proposed created using delta modeling [33, 135]. The test assets are all
constructed out of elements of a state machine; thus, the deltas are additions and removals of
these elements.

Based on the test models and the deltas, they did a case study where test cases were not
transferred from ¢p to tp’ if they had automatically determined that the test case was obsolete or
if the test case tested something that had not been impacted by the change in the test model. Of
course, test cases that is relevant for p’ that were irrelevant for p is added to tp’.

The case study compared the size of the test plans to an application of a combinatorial
testing technique. For the combinatorial testing technique, the relevant tests were run for each
product. The case study showed that the average number of test cases for combinatorial testing
was 64, while that number was reduced to 19 using their incremental technique, 10 being new
and 9 being reused.

Dukaczewski et al. 2013 [49] observed that, in industry, formal test models rarely exist;
thus, the incremental technique proposed by Lochau et al. and Lity et al. is not straight-forward
to apply in industry. Dukaczewski et al. propose to apply the techniques on the requirements
instead. First, the requirements and the test cases, written in natural language, are manually
modeled as formal constructs and related to each other. Then, delta modeling can be applied to
these formal models in order to reduce the testing efforts.

2.4 Related Work: Algorithms for Covering Array
Generation

Three state of the art algorithms for covering array generation are IPOG, CASA and MoSo-
PoLiTe. In this section, these three algorithms will be described in detail and compared with
each other and to the contribution of this thesis.

These three algorithms were chosen because they fulfill criteria that are needed to perform
the extensive, automated, reproducible comparison done in Contribution 2 of this thesis:

1. it must be freely available

2. it must allow programmatic invocation

3. it must at least support 2 and 3-wise covering array generation
4. it was the latest development of that algorithm

38

5. it must have some support for constraints

Other algorithms that fulfilled these criteria but that were not included in our detailed compari-
son were ATGT [23], Microsoft PICT [46] and Grieskamp’s algorithm [61].

Comparisons between these algorithms and CASA exist in the literature. Thus, it is possible
to do an implicit, indirect comparison. ATGT is compared to PICT and an earlier version of
CASA in [26]. A comparison of Grieskamp’s algorithm with PICT and an earlier version of
CASA are included in [61].

24.1 IPOG

In Contribution 2 of this thesis, the tool NIST ACTS version 2 beta, revision 1.5 (acquired
2012-01-04) was compared to SPLCATool v0.3 (SPLC 2012) with respect to covering array
generation.

The version of NIST ACTS we had was closed source, so it is unknown exactly how the
algorithm is implemented in the tool. We ran the tool by selecting the option named "ipog",
which, according to the documentation of the tool [5], was the only option with support for
constraints. It implements some version of the IPOG algorithm. The In Parametric Order
General (IPOG) algorithm [96, 97] is a development of the In Parametric Order (IPO) [98]
algorithm. In addition to selecting "ipog", we set the optimization level to 5 and the fast mode
to "on".

Note that there are several algorithms implemented in NIST ACTS and discussed in e.g.
[97]. The tool in particular implements "ipog", "ipog_d", "bush", "paintball", "ipof" and "ipof2"
[5]. Again, only the option "ipog" supports constraints.

Both Lei et al. 2008 [97] and Lei et al. 2007 [96] describe a version of the IPOG algorithm
that do not handle constraints. Yu et al. 2013 [168] introduces the algorithm IPOG-C, which
introduces constraint handling into the IPOG algorithm in Lei et al. 2007 [96]. This paper was
published in March 2013 and cites Paper 2 of this thesis.

Thus, the latest paper on the IPOG algorithm was published by Lei et al. 2008 [97]. The
algorithm described in that paper in Section 3 will be discussed here. It is, however, not what
is implemented in NIST ACTS version 2 beta, revision 1.5 under the option "ipog", because it
actually handles constraints.

The Algorithm

Algorithm 1 shows the IPOG algorithm that is described in Lei et al. 2008 [97]. The algorithm is
explained in the same level of details in Lei et al. 2008 [97]. It does not support constraints, but
is the latest published algorithm before the acquisition of NIST ACTS version 2 beta, revision
1.5, which was used in our comparison.

It takes two parameters, an integer ¢ and a set of parameters ps. The set of parameters is
assumed sorted with the parameters with the largest domain first. ps contain k parameters. Each
parameter is known as P; for 1 < i < k.

The algorithm starts by adding every combination of the first ¢ parameters to ¢s. Because
each combination is different, they must have one test set for each of them. The algorithm then

39

Algorithm 1 Generate a Covering Array with IPOG (no support for constraints):
IPOG(t,ps) : ts

1: ts < atest for each combination of values of the first ¢ parameters

2. fori=t+1;i<k;i+ +do

3: 7 < the set of all t-way combinations of values involving parameter P; and any group of (¢ — 1) parameters

among the first ¢ — 1 parameters

for each 7 = (v1,vo,...,v;,—1) in ts do

5: choose a value v; of P; and replace 7 with 7/ = (v1, v, ..., v;_1, v;) so that 7’ covers the most number
of combinations of values in 7.

B

6: remove from 7 the combinations of values covered by 7/
7: end for
8 for each combination ¢ in 7 do
9: if there exists a test 7 in test set ¢s such that it can be changed to cover ¢ then
10: change 7 to cover o
11: else
12: add a new test to cover o
13: end if
14: end for
15: end for

proceeds to extend the test set one parameter at a time at Line 2, hence the name "In Parametric
Order".

Within the outer loop from Line 2-15, there are two inner loops. The first inner loop is the
extension to a new parameter, which is called horizontal growth. The second inner loop is the
extension of new test cases, which is called vertical growth.

Before these two loops are run, a set 7 is initialized to all combinations of ¢ values of the
preceding ¢+ — 1 parameters including the values of the current working-parameter F;.

The horizontal growth loop (Line 4-7) iterates through all test sets. Each test set get a value
of the current working parameter P; such that it covers the most number of combinations in 7.
On the next line, these newly covered combinations are removed from 7.

The vertical growth loop (Line 8—14) iterates through all combinations ¢ in 7. This loop
checks if a test can be changed to include the combination, Line 9, and, if it can, that test is
modified accordingly. It is possible to change a test without covering fewer combinations. The
reason is the presence of wild-cards. Changing a test means specifying the wild-card in order
to cover o. If it cannot be changed, then a new test is added that covers o, Line 12.

Comparison

These are the main similarities and differences between ICPL and IPOG as presented in Lei et
al. 2008 [97] and Algorithm 1.

¢ ICPL handles constraints, and IPOG does not.

* Both ICPL and IPOG approach the SCP problem (Set Cover Problem), of which covering
array generation is an instance, with a greedy polynomial time approximation algorithm
similar to that described by Chvatal 1979 [31].

* ICPL fills up an entire test greedily with as many uncovered combinations as possible
before it moves on to the next test. It then continues until all combinations are covered.
IPOG, in contrast, starts with ¢+ = t parameters and then covers all combinations of ¢

40

parameters of the first i parameters before it moves on to the (i + 1)th parameter. It adds
tests when a combination does not fit any test. In other words, ICPL grows only vertically.

* Both IPOG and ICPL support parameters with multiple values. They support them, how-
ever, in different ways. ICPL supports them by a constraint saying that only one of a
set of values can be set to true. i.e. ICPL supports multiple values through the alter-
native construct: vy, ..., v, are the k values of P, and they are constrained as follows:
(01 V- Vo) & P)A N, ; ~(vi Avj). IPOG supports multiple values by having unique
assignments to a parameter from a domain. The alternative construct used in ICPL might
look more complicated than just having a parameter with a wide domain, but the construct
is dealt with easily by SAT solvers: Either one value is set to true, and the whole construct
passes, or else it does not.

* ICPL stores uncovered combinations in a Java HashSet. This set shrinks as more and
more t-sets are covered, making the algorithm run quicker as more t-sets are covered.
IPOG, on the other hand, stores the combinations in a special structure: Each parameter
combination has its own pointer in an array. This pointer points to a bit-map structure
that tells whether each value combination of the parameters is covered.

2.4.2 MoSo-PoLiTe

In Contribution 2 of this thesis, the tool MoSo-PoLiTe v1.0.5 plug-in (acquired 2012-01-25)
to pure::variants 3.0.21.369 (acquired 2012-01-02) was compared to SPLCATool v0.3 (SPLC
2012) with respect to covering array generation.

The MoSo-PoLiTe plug-in was not openly available but was provided to us under a research
license. The source code was provided but under a non-disclosure agreement.

In Perrouin et al. 2011 [123], it was reported that MoSo-PoLiTe generated a 3-wise covering
array from the feature model with 287 features. That covering array was of size 841. In our
experiments, we observed significantly longer execution times for MoSo-PoLiTe than what was
reported in Perrouin et al. 2011 [123], but it produced similar covering array sizes.

In personal correspondence with the authors, we determined that the version of MoSo-
PoLiTe used in Perrouin et al. 2011 [123] is most likely different from the version provided
to us. The version used Perrouin et al. 2011 [123] was not provided to us.

The version of MoSo-PoLiTe provided to us does not have a full support for constraints. It
does support require and exclude constraints, but it has no support for converting constraints
that can be rewritten as a conjunction of require and exclude constraints.

Within the provided system, several algorithms were implemented. We used the algorithm
implemented in the classes Pairwise_NoRP and Threewise after recommendation by the
creators. Pairwise_NoRP uses Hash sets and is not deterministic.

The Algorithm

Because the provided source of MoSo-PoLiTe is under a non-disclosure agreement, we have
chosen to describe the algorithm as published in the latest paper prior to us acquiring the imple-
mentation, Oster et al. 2010 [117]. The paper does not give any pseudo-code of the algorithm.
The algorithm is only briefly described in text. Thus, its details are unavailable.

41

The MoSo-PoLiTe algorithm consists of two parts: 1) flattening and 2) sub-set extraction.
The input of the algorithm is a basic feature model as describe in Table 2.1 except the proposi-
tional formula must be a conjunction of require and exclude constraints and not a general propo-
sitional formula. i.e. if a require b and ¢ excludes d, then the constraint Pis (a — b) A (¢ — —d).
The algorithm as described in the document only supports 2-wise covering arrays, thus a value
of ¢ is not given.

The output of the algorithm is a set of configurations, i.e. a set of set of tuple(f, b) where f
is a feature name and b is a Boolean specifying whether the f is included or not.

Sub-Step 1: Flattening The first sub-step of MoSo-PoLiTe is to flatten the input to an inter-
mediate type of model that is then used as input to the second sub-step, the subset extraction.

The intermediate model is as follows. It is a tuple (P, C') where P is a set of parameters and
C'is a constraint. Each parameter is a tuple (names, values) where names is a set of names
that comprise the parameter, and values is the set of values of the parameter. Only one value
can legally be assigned to a parameter. e.g. for Boolean parameters p, the two values are —p
and p. e.g. if a parameter is mandatory, only one value is possible.

The constraint C' is a conjunction of require and exclude constraints. The primitives of this
constraint are the values of the parameters.

In order to construct the intermediate model (P, C), a set of rules are applied to the tree
bottom-up. It is called 'flattening’ because for each application of a rule, the tree becomes
flatter. Eventually, the tree becomes entirely flat, at which point it fits into the intermediate
model.

Oster et al. 2010 [117] refers to an associated website [116] for the 16 rules that comprise
the flattening algorithm. These 16 rules include all possible situations that can occur in a valid
model for MoSo-PoLiTe. Thus, an application of these rules bottom-up guarantees a flat model
eventually.

For each rule, there is a grandparent node, one or two parent nodes and one or two child
nodes.

The first four rules deal with situations involving one mandatory child node. In all four
situations, the parent node is merged with the child node. The parent node thus becomes a set
of two or more node names.

The next tree rules deal with the situations involving one single optional child node. In
all three situations, the child node is added as a child to the grandparent node, and a require
constraint is added saying that the child requires the old parent node.

The final nine rules deal with the remaining situations utilizing similar substitutions.

Sub-Step 2: Subset Extraction The second sub-step is only briefly sketched. Oster et al.
2010 [117] states that this sub-step is done in a similar manner as IPO. IPO is similar to what
was described above as a part of the IPOG algorithm.

MoSo-PoLiTe reduces the set of combinations by looking at the constraint and the legal
parameter assignments. Its implementation of IPOG thus reduces the set of combinations that
are considered in the sub-steps of IPOG to those that are valid.

In addition, MoSo-PoLiTe applies a technique called *forward checking’. They reference
Haralick and Elliott 1980 [65] for what this technique consists of. Forward checking means that

42

when a pair is considered added to a configuration, it is first confirmed that it will not inevitably
lead to an invalid configuration. The reason forward checking is required is that two pairs that
are valid might lead to an invalid configuration when added to the same configuration. Thus,
when covering a legal pair, it must be checked that it does not cause the configuration to become
invalid as a total.

Comparison

MoSo-PoLiTe as described in Oster et al. 2010 [117] has the following similarities and differ-
ences with IPOG as described in Lei et al. 2007 [96] and with ICPL.

* ICPL handles all propositional constraints; MoSo-PoLiTe supports binary constraints;
IPOG does not support constraints.

* ICPL handles propositional constraints using a SAT solver; MoSo-PoLiTe support con-
straints by excluding invalid pairs based on the binary constraints and using forward
checking.

» ICPL generates a propositional constraint from the basic feature model given to it; MoSo-
PoLiTe flattens its input into its own intermediate format.

* MoSo-PoLiTe can only generate 2-wise covering arrays. IPOG and ICPL can generate
t-wise covering arrays

* MoSo-PoLiTe approaches the SCP problem as both ICPL and IPOG, with a greedy poly-
nomial time approximation algorithm similar to that described by Chvatal 1979 [31].

* MoSo-PoLiTe covers one parameter at a time, similarly to IPOG; ICPL generates one
entire configuration at a time.

* For its intermediate format, MoSo-PoLiTe supports parameters with multiple values using
the alternative construct in the same way as ICPL. For the covering array generation,
however, the alternative construct is treated as a set of possible value assignments instead,
just as IPOG.

24.3 CASA

In Contribution 2 of this thesis, the tool Covering Arrays by Simulated Annealing (CASA) vi.1
was compared to SPLCATool v0.3 (SPLC 2012) with respect to covering array generation.
This tool is free and open-source?, and it implements an algorithms described in Garvin et al.
2011 [59], a development of earlier results presented in Garvin et al. 2009 [58].

Before the work by Garvin et al., Simulated Annealing (SA) had been studied for some
time for the generation of covering arrays. The more general class of algorithms containing
simulated annealing is the meta-heuristic algorithms.

Nurmela and Ostergard 1993 [110] used simulated annealing to construct covering designs,
which are similar to covering arrays. Stardom 2001 [145] investigated several meta-heuristic
algorithms for covering array generation including, simulated annealing, Tabu Search (TS) and
Genetic Algorithms (GA). Cohen et al. 2003 [43] and Cohen et al. 2003b [39] integrated the
previous work on simulated annealing with an algebraic approach for better covering array gen-
eration. Most of the early work on simulated annealing did not consider constraints. Cohen et

’http://cse.unl.edu/~citportal/tools/casa/, accessed 2013-05-29

43

http://cse.unl.edu/~citportal/tools/casa/

al. 2007 [41] extended simulated annealing with a SAT solver in order to deal with constraints.
This forms the basis of which Garvin et al. 2009 [58] developed the algorithms for the CASA
tool.

The Algorithm

Garvin et al. 2011 [59] shows the pseudo code of a basic version of the simulated annealing al-
gorithm for covering array generation. They then proceeded to describe two main improvements
and six refinements to improve this algorithm. Except one, these improvements are described
textually. The improvements are, however, specific to the simulated annealing approach. Thus,
because the purpose here is to compare CASA with ICPL, MoSo-PoLiTe and IPOG, the basic
version of CASA will be described and compared with these three other algorithms.

Algorithm 2 shows the highest level of the basic CASA algorithm. It takes a value ¢ for the
strength of the covering array. k is the number of parameters, and v is the number of values
for each parameter. C' is the complete propositional constraint. [ower and upper are the size
bounds within which a covering array will be searched for. For example, if lower is 1 and upper
is 10, a covering of size 5 might be found, being between 1 and 10.

Algorithm 2 Generate a Covering Array with CASA:
CASA(t, k,v,C,lower,upper) : A
I: A« 0

2: N + |(lower + 2upper) /3]
3: while upper > lower do

4: A+ anneal(t, k,v,C,N)

5: if countNoncoverage(A’) = 0 then
6: A+ A

7 upper < N — 1

8: else

9: lower <~ N +1

10: endif

11: end while

Algorithm 2 implements a binary search within the bounds. First, it makes a suggestion,
Line 2. For example, if lower is 1 and upper is 10, N is first set to (14 2-10)/3 = 7. Then, the
loop at Line 3-11 is run until the space has been delimited. It is delimited in two ways: Line 4
finds a valid array of configurations using the anneal method described later. If it is a complete
covering array, i.e. if there is no non-coverage, that solution is stored and the upper bound is
lowered. If, however, the coverage is incomplete, the lower bound is raised.

Algorithm 2 calls Algorithm 3. Algorithm 3 takes the values ¢, k, v and C' directly from
Algorithm 2. N is the current intermediate between lower and upper. It returns an array of
products that may or may not be a covering array.

Algorithm 3 calls various methods that are given as pseudo-code: initial State, stabilized,
countNoncoverage, SAT and cool. The method starts by calling one of these functions,
1natial State, in order to get an array of size N. Then, temperature is initialized to some
initial value. The main loop starting at Line 3 is continued until the stabilized method has
determined that the number of coverage has stabilized. The loop starts by selecting a random
row and column, and then it copies the array and modifies one of its entries by selecting a new

44

Algorithm 3 Find an Array:
anneal(t,k,v,C,N): A

1: A < initialState(t, k,v,C, N)

2: temperature < initialTemperature

3: while —stabilized(count Noncoverage(A)) do

4: (row,column) < random value from (1..N,1..k)

50 A+ A

6: ;,Ow’cohmn < random value from Veojumn

7. i SAT(C, A}, . ;) then

8: Afitness < countNoncoverage(A') — countNoncoverage(A)
9: p < true with probability of e~2/itness/temperature
10: if (Afitness < 0) V p then
11: A+ A
12: end if

13: temperature < cool (temperature)
14: endif

15: end while

random value. It is then checked, Line 7, whether that new, modified row is valid according to
the constraints. If it is, a change in fitness value is calculated, Line 8, and the variable p is set
to true with a certain probability depending on the fitness change value and the temperature. If
the fitness value is an improvement, the change is negative or the random value is true, then the
temporary change is made permanent. Then, the temperature is cooled making it less likely that
p will become true (because e~ 2/#ness/temperature _y () a5 temperature — 0).

Algorithm 3 will stabilize count N oncoverage(A) if it successfully finds a Covering Array
of size N.

Comparison

In our comparison, CASA was run with the default settings. This makes it estimate a good
lower and upper bound for the sizes.

* CASA is not based on a greedy approach (as ICPL, IPOG and MoSo-PoLiTe) but uses
simulated annealing. Thus, instead of being a greedy-algorithm, it starts with a valid
array, and then tries to improve it. The initial array might of course have been made by a
greedy algorithm.

* CASA supports general propositional constraints in the same way as ICPL, by using a
SAT-solver. As mentioned, MoSo-PoLiTe and IPOG does not support general constraints.

* CASA deals with parameters with multiple values using the same technique as MoSo-
PoLiTe and ICPL: Each value is either selected or not but only one can be selected. This
makes it possible to use an off-the-shelf SAT solver, just like in ICPL.

* CASA requires its input to be in the form of a list of parameter, value and one constraint
expressed in CNF form. ICPL supports generating this from a basic feature model first.
IPOG input is without constraints, and MoSo-PoLiTe supports require and exclude con-
straints only, in addition standard feature groups.

* CASA supports generating t-wise covering arrays just as ICPL and IPOG, unlike MoSo-
PoLiTe.

45

2.4.4 Other Algorithms

There are many papers on the problem of covering array generation. The website pairwise.
org lists 37 tools for covering array generation. Nie and Leung 2011 [109] had collected more
than 50 papers about the problem of covering array generation. Here are some of the other
algorithms for covering array generation.

According to our investigations, none of these algorithms perform better than ICPL when it
comes to generating t-wise covering arrays from large feature models with general propositional
constraints. This was recently seconded by Liebig et al. 2013 [99].

AETG The Automatic Efficient Test Case Generator (AETG) was an early algorithm for cov-
ering array generation presented in Cohen et al. 1994 [35], Cohen et al. 1996 [37] and Cohen
et al. 1997 [36]. It is currently available as a commercial product accessible via a subscription
based web interface?.

AETG is a greedy algorithm. It has some support for constraints by listing the illegal combi-
nations explicitly. It also has some support for generating the list of invalid combinations from
propositional formulas. Further details of the algorithm are, however, unavailable.

Cohen et al. 2006 [40] explained how combinatorial interaction testing though AETG could
be used to test product lines.

AllPairs The AllPairs tool [6] implements an algorithm for covering array generation. The
tool is freely available online*. It uses a greedy approach, and builds up the answer row by row.

ATGT The ASM Test Generation Tool (ATGT) was presented in Calvagna and Gargantini
2008 [23] and Calvagna and Gargantini 2009 [24]. The algorithm takes Abstract State Machines
(ASM) with constraints as input and produces a set of test cases for the ASMs. Constraints are
dealt with by invoking SAL, a bounded and symbolic model checker tool [47].

The tool is available online, freely”.

The Laboratory for Combinatorial Interaction Testing (CITLAB)® was introduced by Cal-
vagna et al. 2012 [56], Calvagna et al. 2013a [28] and Calvagna et al. 2013b [27]. Just
as SPLCATool (the tool implementing the contributions of this thesis), it supports importing
feature models. However, instead of converting it to a propositional constraint, it converts it
to input to the multi-valued parameter formats used by AETG and IPOG. They used it as a
framework for comparing the performance of various algorithms for covering array generation
algorithms, including AETG, DDA, PairTest, CASA and IPOG.

DDA The Deterministic Density Algorithm (DDA) was introduced in Colbourn et al. 2004
[44] and in Bryce and Colbourn 2006 [21]. It is also a greedy algorithm with a new heuristic

Shttp://aetgweb.argreenhouse.com/, accessed 2013-05-28

*http://www.mcdowella.demon.co.uk/allPairs.html, accessed 2013-05-28

Shttp://cs.unibg.it/gargantini/software/atgt/atgt_smt_ccit.html, accessed 2013-
05-28

6Available at https://code.google.com/a/eclipselabs.org/p/citlab/, accessed 2013-05-
28

46

pairwise.org
pairwise.org
http://aetgweb.argreenhouse.com/
http://www.mcdowella.demon.co.uk/allPairs.html
http://cs.unibg.it/gargantini/software/atgt/atgt_smt_ccit.html
https://code.google.com/a/eclipselabs.org/p/citlab/

that makes it faster and more often accurate than four other algorithms they it was compared to
in an experiment: AETG, TCG, IPO and TConfig.

GTWay Zamlietal. 2011 [169] introduced an algorithm for covering array generation called
GTWay. Their algorithm supports concurrent execution, and performs better than the compared
algorithms for high coverage strength, ¢ > 6. They compared GTWay with IPOG, Whitch,
Jenny, TConfig and TVG II. GTWay was a development of G2Way introduced in Klaib et al.
2008 [91]. It is a backtracking algorithm that tries to combine uncovered interactions in the best
possible way. It sets up the possible pairs in a similar structure as IPOG (discussed above).

IPOG-C Yu et al. 2013 [168] introduces the IPOG-C algorithm. It introduces constraint
handling into the IPOG algorithm in Lei et al. 2007 [96]. IPOG-C utilizes some optimization
techniques similar to those in ICPL in addition to some new techniques. (The paper cites Paper
2 of this thesis.)

mMAETG mAETG was introduced in Cohen et al. 2003 [43]. It was extended with constrain
handling using a SAT solver in Cohen et al. 2007 [41] and Cohen et al. 2008 [42]. mAETG,
like AETG, is a greedy algorithm.

PACOGEN PACOGEN is an algorithm and a tool” by Hervieu et al. 2011 [73]. It can gen-
erate covering arrays from constrained feature models. It uses constraint programming instead
of a SAT-solver to validate constraints. PACOGEN makes a constraint-solving problem out of
the problem of generating a 2-wise covering array from a specific feature model. It then runs a
branch-and-bound method to find a covering array.

Perrouin’s Algorithm Perrouin et al. 2010 [124] introduced an algorithm for covering array
generation that converted the problem of generating a covering array into a problem for Alloy
[75]. They presented several optimizations to make this quicker. In Perrouin et al. 2011 [123]
this algorithm was compared with MoSo-PoLiTe. They found that MoSo-PoLiTe was more
stable, was much faster and produced smaller covering arrays.

PICT Microsoft’s tool PICT implements an AETG-like algorithm that is optimized for speed.
It was introduced in Czerwonka 2006 [46].

Other There are even more algorithms: Calvagna’s Algorithm [29], Jenny [76], AETGm [38],
a Generic Algorithm (GA) and an Ant Colony Algorithm (ACA) was introduced in Shiba et
al. 2004 [143], PairTest [153], Grieskamp’s Algorithm [61], IPO-s [25], IBM Intelligent Test
Case Generator (Whitch) CTS and TOFU [66], TConfig [167], TestCover [142] and Test Case
Generator (TGC) [158].

"PACOGEN is available at http://hervieu.info/pacogen/ and http://www.irisa.fr/
lande/gotlieb/resources/Pacogen/, accessed 2013-05-28

47

http://hervieu.info/pacogen/
http://www.irisa.fr/lande/gotlieb/resources/Pacogen/
http://www.irisa.fr/lande/gotlieb/resources/Pacogen/

Chapter 3

Contributions

3.1 Opverview and Relation to the State of the Art

Figure 3.1 shows a test process for product lines and where in this process this thesis contributes
(marked 1-5.) Three assets are needed before the test process can be applied: A feature diagram
(Asset A), an implementation (Asset B) and test cases (Asset C).

None of the contributions address the generation of tests (Asset C), in contrast to PLUTO,
ScenTED, CADeT, MoSo-PoLiTe and incremental testing. They address this issue in various
ways and also integrate this selection with product selection.

Contribution 1, 2 and 4 address the sub-setting of products for product line testing. Products
are proposed selected by combinatorial selection techniques as in CIT, MoSo-PoLiTe, CADeT
and some of the incremental testing approaches. Contribution 1 and 2 investigate and improve
the efficiency of algorithms for test product selection. The ICPL algorithm, described in Con-
tribution 2, enables the (2-wise) sub-setting of products for product lines with as much as 7,000
features, one of the largest documented product lines. Contribution 4 enables market-focused
selection and prioritization for product selection with combinatorial techniques.

Contribution 3 is a technique for using information in the implementation (Asset B) to im-
prove the testing of the selected products: Products that differ only in the implementations of
the homogeneous abstraction layers can be tested using the same test suites and their results can
be compared to form a voting oracle.

Finally, Contribution 5 addresses the automation of the entire testing process shown in Fig-
ure 3.1. Assuming the existence of the Asset A, B and C, the proposed algorithms and their
implementations automatically generate Asset D, E and F. The automated test process is demon-
strated by a fully automated application to the part of the Eclipse IDE maintained by the Eclipse
Project. Such a large-scale, fully reproducible and fully documented application of a product
line testing technique is not found in the existing literature on product line testing.

The idea of Contribution 5 is not necessarily to represent a finalized and all-encompassing
testing process, but rather to serve as a base-line for comparison and advancement of scalable
product line testing techniques.

The five contributions are covered in four sections. The generation of covering arrays from
large feature models (Contribution 1 and 2) is covered in Section 3.2, and then three advance-
ments of CIT (Contributions 3-5) are presented in sections 3.3-3.5 respectively.

49

A) Feature Diagram B) Implementation Artefacts / Base Model C) Test Cases
Class1 Class2
n : Integer n : Integer
Lo notify()
Bindings T f Test Case
[a——
1
n=n+1; Class3
Y f.notify(); notify() : Integer
(1, 2, 4) |Sampling
e Marking H@:ating
v (3
= O g o =
7 D 7
{ ,\) L {\D,\) Y Xy
o 0 o= . P1 P2 @0 Rq1
NG - Building »@——» 0@ Rq2
= = A7 Rg3
O - q
m| TN
o U o) P3| | P 0@ Rg4
D) Swarm of Possible E) Products to Test F) Test Report
(5) Configurations

Figure 3.1: Contributions 1, 2, 3, 4 and 5 as Parts of a Whole Test Process

3.2 Generation of Covering Arrays from Large Feature
Models

3.2.1 Difficulty of Covering Array Generation

The generation of t-wise covering arrays is generally regarded to be an intractable problem
[109]. This is arrived at through complexity analysis, with which it is classified as NP-hard.

The argument is: In order to get a set of valid products, one valid product must be found. A
basic feature model is expressively equivalent to a Boolean formula; thus, finding a single valid
product is equivalent to the Boolean satisfiability problem (SAT). This problem is the classic
NP-hard problem. NP-hard means the problem is at least as hard as the hardest problem in
NP [55].

In complexity analysis, an algorithm’s complexity is usually arrived at by considering the
worst of the valid inputs (worst-case analysis). This is of course useful when any input can
occur. However, such analysis can be too pessimistic when the context of a problem limits
which inputs will ever be presented to an algorithm.

SPLE-SAT is Easy

Such is the case for feature models in the context of software product line engineering (SPLE).

This was the main theme of our paper titled "Properties of Realistic Feature Models make

Combinatorial Testing of Product Lines Feasible" published at MODELS 2011 [78], Paper 1.
It is not unique for the SPLE context. In a series of publications starting with [30] and ending

50

in [17], it was established that the satisfiability problem is easy for Boolean formulas originat-
ing from realistic VLSI circuits (Very-Large-Scale Integration circuits). This sub-problem was
termed ATPG-SAT (Automatic Test Pattern Generation-SAT). These quotes from [30] should
make their reasoning clear:

It has been observed that SAT formulae derived from ATPG problems are efficiently
solvable in practice. This seems counter-intuitive since SAT is known to be NP-
Complete. This work seeks to explain this paradox. We identify a certain property
of circuits which facilitates efficient solution of ATPG-SAT instances arising from
them. In addition, we provide both theoretical proofs and empirical evidence to
argue that a large fraction of practical VLSI circuits could be expected to have the
said property.

and

Note that we are not generating arbitrary SAT formulae during ATPG:; there is some
structural quality inherent in ATPG problems which makes them easy to solve.

Following the same style as ATPG-SAT, the sub-problem of SAT originating from realistic
feature models can be called SPLE-SAT.

The role of feature models in SPLE is for potential customers to be able to configure a
product according to their needs. Had this been difficult, the customers could not do this.
Indeed, in the worst case, not a single product from the product line could be delivered. This
is absurd. In SPLE, feature models are easily configurable in order to serve their purpose.
Figure 3.2 shows the situation in a Venn diagram: Even though both SPLE-SAT the hard SAT
problems are both sub-sets of SAT, they do not necessarily intersect. Given that this situation is
true, SAT solvers can be used to configure feature models without risking intractability.

SAT

Figure 3.2: Although there are hard SAT problems, SPLE-SAT need not overlap the region.

Paper 1 establishes that SPLE-SAT is easy in two parts: the argument just put forth and an
empirical investigation. 19 realistic feature models were investigated. It was found that even
for the largest feature models publicly available, the Linux Kernel feature model, satisfiability
is quick, taking 125 ms with SAT4J. Indeed, the Linux kernel is meant to be configured by hand
(assisted by a SAT solver), something that is regularly done by advanced Linux users.

Earlier than our work, Mendonca et al. 2009 [106] had noticed that satisfiability for SPLE-
SAT for some reason was quick in practice. They did not provide an explanation for this,
however.

51

Covering Array Generation is Feasible

Now, given that SPLE-SAT is easy, generation of covering arrays then, by complexity analy-
sis, reduces to the set-cover problem (SCP). SCP is not NP-hard; it is actually NP-complete
and has a polynomial time approximation algorithm with an established and acceptable upper
bound [31]. This algorithm is a greedy approximation of SCP. Approximation, in this context,
means that there will be more products than optimally possible, but it also means that the num-
ber of products in the worst-case still is limited by some upper bound. The greedy algorithm
is quite simple: Select the configuration that covers the most uncovered interactions until all
interactions are covered. This algorithm needs to be modified for covering array generation
from feature models because the configuration space generally is exponential with respect to
the number of features. This additional stage is a contribution of Paper 1: This is solved by
greedily packing uncovered interactions into a configuration. This voids Chvétal’s upper bound
guarantee; however, we did investigate the impact of this as follows:

A tool was implemented, and a corpus of 19 feature models was collected. The experiment
is documented in Paper 1. In it, all 19 feature models were given to the tool, and 1-4-wise
covering arrays were attempted generated. It could be understood from the sizes of the feature
models in the corpus when a covering array would take too long to generate.

As just mentioned, the algorithm was based on a greedy approximation for the set-cover
problem (SCP). This basic algorithm was shown to have an acceptable upper bound [31]; but,
for feature models, due to their huge configuration space, this upper bound cannot be achieved.
Still, it was shown that for the realistic feature models, the covering arrays did stay within
an acceptable size. Due to the central role of a satisfiability solver within the algorithms, we
suggested that the algorithm was a good basis for a scalable algorithm for t-wise covering array
generation.

The algorithm’s performance is not compared with the other available algorithms for t-wise
covering array generation. The performance of this algorithm is, however, on par with the other
state of the art algorithm, as would be later documented in Paper 2, which contributions are
discussed next.

3.2.2 Scalable t-wise Covering Array Generation

Having established the tractability of SPLE-SAT and having a basic algorithm for covering
array generation with potentials for improvement, the basis was set for the development of a
scalable algorithm for t-wise covering array generation.

Such an algorithm was the contribution of our paper titled "An Algorithm for Generating
t-wise Covering Arrays from Large Feature Models" published at SPLC 2012 [79], Paper 2.

The algorithm named ICPL was developed and implemented by profiling the basic algorithm
and speeding up its bottlenecks by an analysis of the situation creating the bottleneck. This
resulted in a range of optimizations presented in Section 3 and 4 of Paper 2. (The interested
reader is advised to read those sections at this point.)

To establish its performance, an evaluation and comparison was set up. The results of this
evaluation and comparison are reported in Section 5 of Paper 2. The performance of the al-
gorithm was compared to the basic algorithm from Paper 1, called "Algorithm 1", and three

52

of the leading algorithms for covering array generation: IPOG [96], CASA [59] and MoSo-
PoLiTe [117]. Thus, these five algorithms were compared: ICPL, Algorithm 1, IPOG, CASA
and MoSo-PoLiTe. This comparison is presented as the space permits in Paper 2. The re-
maining details and the additional diagrams are added as Appendix C. A detailed description
of IPOG, CASA and MoSo-PoLiTe is found in Section 2.4 including a qualitative comparison
with ICPL.

The evaluation of ICPL shows that only it can generate the 2-wise covering array from the
largest feature model available, the Linux Kernel, within a time limit of 12 hours. This feature
model is gigantic with 6,888 features and 187,193 clauses in its complete CNF-constraint.

The speed of each algorithm was measured by giving each algorithm three whole days to
generate 100 covering arrays for each feature model and for each strength: 1, 2 and 3. All
algorithms managed to do this for the same 16, 14 and 12 feature models for 1, 2 and 3-wise
covering arrays, respectively. A statistical analysis of these runs showed that ICPL’s time is
O(f°7) with respect to the number of feature in the feature mode, f, while the second fastest,
MoSo-Polite’s, time is O(f!™). For 3-wise covering arrays, ICPL’s time is O(f!11) against
O(f%92) for the second fastest, MoSo-PoLiTe.

For a feature model with 1,000 features, ICPL is almost 1,000 times faster than the second
best for 2-wise covering array generation, and ICPL is almost 30,000 times faster than the
second best for 3-wise covering array generation.

3.2.3 Consolidations

For this section of contributions, some consolidations can be noted.

* The existence and performance of ICPL are further arguments in favor of the claim of
Paper 1 that the generation of t-wise covering arrays from realistic feature models is
feasible in practice.

* Henard et al. 2012 [72] acknowledges that the tool developed for our MODELS 2011-
paper (SPLCATool v0.2) was a state of the art tool for covering array analysis and gen-
eration. They used it as the main comparison to their own contributed algorithms and
implementations.

* Paper 2 suggested that there were more optimizations possible for t-wise covering array
generation. Haslinger et al. 2013 [68] suggest additional improvements to speed up the
algorithm.

» Kowal et al. 2013 [93] further improves ICPL by adding a filtering step before running
ICPL. This filter filters out feature combinations that are known not to interact. They
show that this both decreases the time it takes to run ICPL and decreases the number of
products generated by ICPL.

* Liebig et al. 2013 [99] propose a variability aware analysis technique for validating prod-
uct lines. They evaluate their proposed technique by comparing it with three sampling
techniques, one being pair-wise sampling. For pair-wise sampling they chose the ICPL
algorithm proposed in Paper 2 of this thesis as implemented in SPLCATool. They re-
port that not only is this the fastest algorithm they could find for pair-wise covering array
generation, it was also the only algorithms that was scalable enough to be used in their
experiments.

53

3.3 Optimized Testing in the Presence of Homogeneous Ab-
straction Layers

Cabral et al. 2010 [22] writes that "Alternative features [...] present a more difficult challenge
for testability. We argue that these are the true deterrents to testability since only one feature
can be present in an SPL at a time."

One type of common software construct causes alternative features in the product line’s fea-
ture model: homogeneous abstraction layers. Customers usually have a wide range of different
deployed software that provides essentially the same functionality: operating systems—with
their file handling, networking, virtual memory, threading and synchronization—databases,
with their obvious functionality; windowing systems, interfaces, hardware architecture, etc.
These all come in different variants (e.g. Windows, Linux, MacOS, etc.; Oracle, Microsoft
SQL, MySQL, PostgreSQL, etc; Windows, GTK, Motif, Photon, etc; Intel x86, Intel x86-64,
PowerPC, ARM, etc.), but provide essentially the same functionality.

A technique used to make a system run in different environments is to make an abstraction
layer that is implemented concretely for each particular system but that provides a uniform
way of interacting with them to the product line code. Thus, in order to make a product of a
product line function in a specific environment, we need to set up the right implementation of
the abstraction layer. The selection of such an implementation must be modeled as an alternative
feature.

Thus, when a product line is designed to be able to run in differing environments, its feature
model will have many alternative features. This again, deters the testability of the product line
with CIT.

We found a way to turn this problem into a benefit. Whenever alternative features due
to homogeneous abstraction layers cause a deterioration of the performance of combinatorial
interaction testing, it can be turned around and used to help testing instead. This result was
presented in the article titled "Bow Tie Testing: A Testing Pattern for Product Lines" published
in "Pattern Languages of Programs", the proceedings of the 16th European Conference, 2012!
[80], Paper 3.

3.3.1 Description of the Technique

Because implementations of homogeneous abstraction layers are supposed to provide the same
functionality to the product line assets, we know that whatever concrete implementation is cho-
sen, the product will behave essentially the same. Thus, if a test case is run on two products that
only differ in their implementations of their homogeneous abstraction layers, the test will result
in essentially the same execution trace. Thus, we can compare the executions; if they differ, we
know that something is wrong. It is of course not limited to two products. If there are three or
more, we can construct a voting oracle [18]; if we know one of the executions are correct, we
can use it as a gold standard oracle [18].

We did implement tool support for the detection of such groups of products. Annotate a
feature model to inform the tool which alternative feature groups are due to a homogeneous

IThis paper was published at a conference on patterns. The patterns community have several special require-
ments in the presentation of a pattern. In this part of the thesis, the pattern-style of presentation will not be used.

54

abstraction layer. Then, the tool will note groups of products that only differ beneath this layer.

3.3.2 Application to Finale’s Systems

Finale’s systems are systems for reporting various things about a company’s finances to the
government. This is required by the government to ensure that all the taxes are collected as
required.

Finale’s systems run on all versions of Windows that is supported by Microsoft. When we
worked with this case study, three different versions were supported on the client-side: Windows
XP SP3, Windows Vista SP2 and Windows 7. All come in 32-bit and 64-bit variants. Finale’s
systems had to run correctly on all systems with a graphical interface zoom level of 100%,
125% and 150%. On the servicer-side, four versions of windows were supported: Windows
2000, Windows 2003, Windows 2008 and Windows 2008 SR2. The major abstraction layer
was, however, towards the accounting systems. They supported 18 types of accounting systems,
all interacted with through a homogeneous abstraction layer.

If we want to exercise all pairs of interactions, all products containing a version of client-
side Windows paired with a version of an accounting system, then we need at least 6« 18 = 108
products. Indeed, the pair-wise covering array contains 116 products. If we group together
those products that only differ below a homogeneous abstraction layer, we reduce the number
to 60.

The Finale case was not documented in detail in Paper 3 because of confidentiality concerns.
Instead, we used the more open Eclipse IDE case study.

3.3.3 Application to the Eclipse IDEs

The Eclipse IDEs are used as a case study throughout this thesis. One aspect of the Eclipse
IDE:s is given focus only in this part. Although Eclipse is programmed mostly in Java, it is
not completely so. The reason is that the programmers found it to be too slow. Thus, they
replaced the implementations of abstraction layers in Java with their own implementations. For
version 3.7.0, they supported six operating systems: Windows, Linux, MacOS X, Solaris, AIX
and hpux. These operating systems provided various windowing systems and ran on various
hardware architectures. In total, they support 16 combinations of hardware, windowing systems
and operating systems.

This caused the pair-wise covering array of the sub-set of the Eclipse IDEs used in this part
to grow to 41 products. Out of these, only 20 groups of products need to be tested with a unique
test suite, the rest differ only beneath the homogeneous abstraction layers. Covering the system
with 1-wise testing gives 10 products, but only 5 test suites are required. For 3-wise testing,
with 119 configurations, only 45 test suites are required.

It should be noted that if the other constructs in the feature model are the main cause the
covering array’s large size, then no benefits can be derived from the technique described here,
but, then, the alternative features are not the cause of the deteriorations either.

For more details on this and on the Eclipse IDE case, see Appendix E.

55

3.4 Market-Focused Testing based on Weighted Sub-Product
line Models

The idea behind combinatorial interaction testing is to exercise all simple interactions. In some
cases, however, this implies some wasted effort. The product line’s market can limit which
products will occur. Then, there is no need to exercise all simple interactions.

In order to focus on the market-relevant interactions, the market situation must be captured
or modeled somehow. Such a model is a contribution of our paper titled "Generating Better
Partial Covering Arrays by Modeling Weights on Sub-Product Lines" published at MODELS
2012 [82], Paper 4. Relevant algorithms based on this new type of model were introduced along
with two reports on applications: to TOMRA’s RVMs and to the Eclipse IDEs. These things are
covered in turn in the next subsections. Note that because of space constraints in Paper 4, we
did not include details of these algorithms. Such details are provided in Appendix B.

3.4.1 Weighted Sub-Product Line Models

During our work with the TOMRA industrial case study, the domain experts noted that although
a customer could order any valid configuration of their feature model, it would never happen in
practice. The reason was that there were certain clusters of features that were usually combined
to serve the need of certain market segments.

To model this, we developed a new kind of model called a Weighted Sub-Product Line
Model. This model is created in a spreadsheet editor such as Microsoft Excel or Open Office.
It contains a set of sub-product line models. They are called sub-product lines because they are
partial configurations of a feature model. Because a feature model defines a set of products, a
sub-product line defines a sub-set of the feature model’s products, thereby the term sub-product
line. They are weighted because each sub-product line is annotated with a positive integer value
that serves as a measure of that sub-product line’s importance with respect to testing.

A sub-product line model is made by specifying, for each feature, whether that feature is
included, excluded or unassigned. This last option retains some of the configurability. Had all
features been specified as included or excluded, we would have a configuration. The symbol
chosen for this last option is a question-mark (’?’); the symbols for included and excluded are a
cross (’X’) and a dash ("-’), respectively.

A sub-product line can be easily classified as valid or invalid: Simply set all the assignments
specified in the sub-product line in the propositional formula, and ask a SAT-solver whether a
valid configuration exist. If it does, the sub-product line is valid; if it does not, it is invalid.

A property of any valid sub-product line is that the number of products subsumed by it is
equal to or smaller than the number of products subsumed by the product line itself. Another
property is that these products are the same as or a subset of the products of the product line.

It can be argued that these models model the market situation relevant for testing purposes.
Say that the sub-product lines are market segments, and that the weights are the size of that
segment, they model the market situation in the following ways: (1) They might exclude a wide
range of configurations that will never occur because they are not a valid configuration of any
of the sub-product lines. (2) They capture the fact that certain products are more prevalent
than other products, and should, in case of prioritization, be the higher priority. Predictions or

56

expectations of the future can also be embedded in the weights. Then, testing is forward-looking
in that it prioritizes those interactions that are more likely to occur in the future.

3.4.2 Algorithms Based on These Models
Weighted t-sets

Because we are doing combinatorial interaction testing, we want to get knowledge about t-
sets. A t-set is given a weight in the following way: If a particular assignment of ¢ features
is in a sub-product line, then the sub-product line’s weight is given to the t-set. If the t-set
is captured within a sub-product line with n unassigned features, then it gets a %—part of the
weight. This is because one question mark gives two possibilities, and thus n question marks
give 2" possibilities. This algorithm is fully described in Section B.2.

Weighted Covering Array Generation

During ordinary covering array generation, t-sets are selected from a set. Because sets are
unordered, picking a t-set from a set means picking it at random. When each t-set has a weight,
we can order them. One data structure for doing this is the priority queue. The t-set with the
highest weight will always be on top of the priority queue. Instead, then, of selecting a t-set at
random, the highest weighted t-set will be selected first.

All the weighted t-sets can be put into a priority queue from which t-sets will be picked
during covering array generation. This means that the first products of a covering array will
contain many feature interactions that are popular in the market. Thus, we can more meaning-
fully talk about a partial covering array. In ordinary covering array generation, the first product
is selected so that they cover as many interactions as possible. These interactions might not be
the most relevant to test, which is not the point of ordinary combinatorial interaction testing
anyway because its purpose is to test all simple interactions. If we have to select a limited num-
ber of products, then a partial weighted covering array is a meaningful answer. An algorithm
for generating such arrays is detailed in Section B.3.

Weight Coverage

In ordinary covering array generation, we want to cover simple interactions. Thus, we can
define the t-wise coverage of a set of products as the number of t-sets they cover divided by the
number of valid t-sets. With weights defined, however, we can introduce the notion of weight
coverage. This is defined as the amount of weight covered by a set of products divided by the
sum of all weights for all t-sets.

Incremental Evolution

The notions introduced thus far allow us to cater for another need. Given that we have an
elaborate test setup, how can we gradually and incrementally adapt it? Such a gradual evolution
is good because large changes might be costly or time consuming. Small gradual changes fit
into a process of gradual evolvement of a product line, which is the usual process.

57

Let us say a new market segment is introduced, or the size of a market segment changes.
How should the test lab be changed to gradually adapt to these changes? Given a set of products
already set up and already being tested, we constructed an algorithm that suggest one, two or
three changes to the lab such that the weight coverage is maximized because of the changes.
These changes consists of changing a feature from included to excluded, or vice versa. Such an
algorithm is detailed in Section B.4.

3.4.3 Application to TOMRA’s RVMs

The main case study of Paper 4 is an application to the TOMRA case study. TOMRA Verilab
is responsible for testing TOMRA’s RVMs. They did not have a feature model of their product
line. The first stage was to model the feature model (Fig. 2 of Paper 4) and to specify the
configurations of the products in their test lab (Table 3 of Paper 4). After we had created the
notion of a weighted sub-product line model, we modeled their market situation (Table 4 of
Paper 4). This allowed us to do several experiments to evaluate the usefulness of this new kind
of model.

1. The domain experts compared the products generated from ordinary covering array gen-
eration to those generated from weighted covering array generation. They found that the
latter ones were more familiar to them and were closer to products found in the market.

2. A second experiment was to calculate the two kinds of coverages for their existing lab.
We found that it had higher weight coverage than interaction coverage. This is consistent
with the domain experts’ claim that their lab is manually configured to be relevant for the
market situation yet exercise a variety of different interactions.

3. A third experiment was to generate a completely new test lab as a partial weighted cov-
ering array. We found that significantly fewer products were needed than they currently
had to achieve the same coverage. Another take on this is that they can achieve higher
coverage with the same amounts of products in their lab.

4. A fourth experiment was to generate some simple changes to their existing lab to increase
its coverage. These changes were evaluated by the domain experts. They were initially
skeptical of the suggested changes, but, after some deliberation, they agreed that the
suggestions were good. This shows how the automatic tooling takes into account more
factors quicker.

Unfortunately, we did not get to the point of evaluating the error-detection capabilities of the
approach due to time and resource limitations. Also and because the actual system was unavail-
able to us, the further application of the technique was outside our control.

3.4.4 Application to the Eclipse IDEs

We also got to document a small application to the Eclipse IDEs. This was primarily included
to indicate the generality of the contributions. We could gain some knowledge of the market
situation of the Eclipse IDEs because the Eclipse project publish the number of downloads
for each of their 12 offered products. The downloads are an indication of the amount of that
product out there. A small experiment showed that only four products were needed to be tested
to exercise 95% of the weight of the interactions in the market.

For more details on the Eclipse IDE case, see Appendix E.

58

3.5 Agile and Automatic Software Product Line Testing

Up to this point, a lot has been said and claimed about product line testing, but something that
is lacking is a complete, end-to-end, large-scale application of a testing technique. Having such
a thing documented would be of use to researchers and industry, and it would give an insight
into were new contributions are needed the most.

This was the motivation for the results in a paper titled "A Technique for Agile and Auto-
matic Interaction Testing for Product Lines" published at ICTSS 2012 [81], Paper 5.

3.5.1 Challenges in Need of an Answer

There were a number of challenges that needed to be answered in order to get such a large-scale
application in place.

We already had an open source case study that we could work with, the Eclipse IDEs. We
also had a scalable way to select a small set of products that we could test, namely the ICPL
algorithm. The challenges remaining and our answer to them are:

* How to build the products automatically? As for the Eclipse IDEs, we found that the
Equinox p2 Director of the Eclipse Project was bundled with the Eclipse Platform. It
allowed features to be installed programmatically. Thus, by providing a list of features,
we could automatically construct an Eclipse IDE product from scratch. This is an ap-
plication of the components, frameworks and plug-ins approach to software product line
engineering, discussed in Section 2.1.2.

In addition, the CVL Tool v1.x already had the capability to build product models auto-
matically. Thus, we decided to include a CVL-based product line as a case study. This
is an application of the CVL approach to software product line engineering, discussed in
Section 2.1.2.

* How to get test-assets? In the Eclipse project, each feature is developed by a separate
team. As a part of each feature project, a test suite is developed to test that feature as a
feature. This was a source of test cases that we could try to utilize for product line testing.

During our work with the ABB case study, we had set up some test cases that exercised
various features. These would serve the same purpose as the tests gathered for the Eclipse
IDE case.

* How to run the test? The answer to this question depends on the availability of test
assets. What we have for the Eclipse IDE are test cases that test the features (or a com-
bination of them). Because making test cases is time-consuming and requires domain
expertise, it was infeasible to do it within the time frame of the thesis. We established
that we could in fact learn some interesting things by exercising a feature (or a combi-
nation of features) when that feature (or that combination of features) is a part of some
product (see the next subsection for an explanation). Thus, it was decided that the last
challenge that needed an answer could be answered by running the existing test suites for
the features (or a combination of features) on the products that contain them.

59

3.5.2 Testing Interactions using Tests for Features

Say we have a product line in which two features, A and B, are both optional and mutually
optional. This means that there are four situations possible: Both A and B are in the product,
only A or only B is in the product and neither is in the product. These four possibilities are
shown in Table 3.1a.

Table 3.1: Feature Assignment Combinations

(a) Pairs (b) Triples
Feature\Situation | 1 | 2 | 3 | 4 Feature\Situation | 1 | 2 |3 |4 | 5| 6|7 |8
A X | X1 -]- A X I X[X[X|-1]-1-1-
B X|-1X]- B X | X -1]-X[|X|-1-
C X|-1X|-X]-|X]-

If we have a test suite that tests feature A, T'est A, and another test suite that tests feature B,
TestB, the following is what we expect: (1) When both feature A and B are present, we expect
TestA and Test B to succeed. (2) When just feature A is present, we expect T'est A to succeed.
(3) Similarly, when just feature B is present, we expect T'est B to succeed. (4) Finally, when
neither feature is present, we expect the product to continue to function correctly. In all four
cases, we expect the product to build and start successfully.

Similar reasoning can be made for 3-wise and higher testing, which cases are shown in
Table 3.1b. For example, for situation 1, we expect T'estA, TestB and TestC' to pass, in
situation 2, we expect T'estA and T'estB to pass, which means that A and B work in each
other’s presence and that both work without C. This kind of reasoning applies to the rest of the
situations in Table 3.1b and to higher orders of combinations.

3.5.3 [Evaluation of Previous Techniques

Before we could construct a testing technique that could be applied to large-scale software prod-
uct line, we needed to know that whatever we learn from the application of the new technique,
we did not already know with another existing technique. The two other similarly, directly ap-
plicable techniques are reusable component testing (RCT) and combinatorial interaction testing
(CIT). For a discussion of other techniques and the reason why they are not as easily applicable,
see Section 2.3.

Reusable Component Testing — Pros and Cons

* Pro: Tests commonalities — The technique tests the common features by testing compo-
nents used as building blocks for products in the product line.

* Pro: Usable — The technique is a fully usable software and hardware product line testing
technique: It scales, and free, open source algorithms and software exists for doing the
automatic parts of the approach.

* Pro: Agile — The technique is agile in that changes to the feature model will not break
the feature test suites. This allows the product line to evolve dynamically while still
being able to test the commonalities independently of the feature model. In addition,

60

the technique is agile in that changes to a component might only cause its tests suite to
stop functioning. Thus, when the internals of a feature changes, only its test suite might
need modification. This allows the maintainers of a feature to evolve their feature without
breaking the other parts of the product line test suite.

* Con: Does not test interactions — The major con of this approach is that it does not
test interactions between features. It does not test whether the features will work in the
presence of other features, whether it will cooperate correctly, or whether it works when
other features are absent.

Combinatorial Interaction Testing — Pros and Cons

* Pro: Usable — The technique is a fully usable software and hardware product line testing
technique It scales, and free, open source software exists for doing all the automatic parts
of the approach.

* Pro: Tests interactions — The technique can find faults that can be attributed to interac-
tions between features or that are caused by missing features. This is based on empirics
by Kuhn et al. 2004 [94], and supported further by Garvin and Cohen 2011 [59] and
Steffens et al. 2012 [146].

* Con: Sensitive to changes — The covering arrays generated may completely change if the
feature model is changed. Because this is the first step in the application of the approach
and because the other stages depends on it, the technique makes the product line rigid in
that a change to a feature model causes the test suites of the product line to break.

* Con: Manual — The technique has automatic steps: Both the covering array and the
products in it can be automatically generated, but then tests must be set up manually for
each product in the covering array.

3.5.4 The Automatic CIT Technique

Recall that the goal of this part of the achievements is to set up a complete testing of a large-
scale software product line. In order to achieve this within the time and resource constraints,
the following simple technique was devised:

1. Generate a t-wise covering array (preferably 2 or 3-wise).
2. Automatically build each product.
3. For each product,

(a) run the test suites that are related to its features.
(b) run static analysis on the source code, if available.

4. Note the results in a table for analysis by domain experts.

In many cases, it was found that it is possible to determine the erroneous interactions by
looking at when a test fails and when it succeeds. The difference between the products can give
a definitive answer to this. In most cases, however, faults may overshadow each other. In those
cases, a more detailed look at the error reports is needed.

The two applications of the technique are empirical evidence that not only is the technique
applicable, but new bugs were also found without creating any new tests than the existing tests

61

for the systems. How can a test that was not designed to be an interaction test cause interaction
failures? Simply because if a feature (or a feature combination) succeeds in most cases but
fails in the presence or absence of a certain other combinations of features then the failure
can be attributed to an interaction between the feature (or features) being tested and that other
combination.

3.5.5 Application to the Eclipse IDEs

As was the motivation, we did a complete application of the technique on the Eclipse IDEs
v3.7.0 (Indigo), the 22 features supported by the Eclipse Project plus (3) additional features
commonly used.

To speed things up, we created a local mirror of the Eclipse v3.7.0 (Indigo) repository
totaling 3.6GiB that would serve as a cache. We downloaded 37 existing test suites with a
total of 40,744 unit tests from four feature projects.

We scripted the entire technique to be applied in total at the click of a button. These scripts
are documented in Appendix E and Section D.3.52.

When run, the technique produced 417,293 test results among which 513 were some kind
of failures. All test suites succeeded for at least one product. This indicated that there was
some interaction problem occurring at some stage in the testing process. The running of the
technique a single time on one machine took about 23 hours. With 13 nodes, this would have
been reduced to about 2 hours. The maximum disk space spent was 11 GB.

This case study was not completely documented in Paper 5 due to space constraints. Those
details are available in this thesis. Appendix E contains the long version of the application
outlined here.

3.5.6 Application to ABB’s Safety Modules

We also did an application of the technique on a simulated version of the ABB safety module.
Two bugs were identified by the creator of the simulated version of this safety module. Unfor-
tunately, due to time limitations, we did not get to apply the technique to the real safety module.
It was not available to us at SINTEF. According to ABB, the safety module did have a large
collection of test cases. The Eclipse IDE case can indicate how an application would look like.

The ABB Safety Module is a physical component that is used in, among other things, cranes
and assembly lines, to ensure safe reaction to problematic events, such as the motor running too
fast, or that a requested stop is not handled as required. It includes various software configura-
tions to adapt it to its particular use and safety requirements.

A simulated version of the ABB Safety Module was built—independently of the work in
this thesis—for experimenting with testing techniques. It is, unfortunately, only this version of
the ABB Safety Module which testing is reported in this thesis.

Figure 3.3 shows the feature model of the ABB Safety Module. The author of this thesis did
not participate in the creation of the simulated version of the ABB Safety module. The feature
model in the paper is in the FeatureIDE syntax and is slightly different. The reason is that the
model used in Paper 5’s experiment was an earlier version.

They are also available on the Paper 5 resource page

62

—"
« SafetyModule

Communication...

« SafetyFunctions

SafetyDrive
7

empty

dummy
tc_placement
tc sms phace...

[ilh clean \

* 5TO

* SIL
* Level2 * Level3
7
8 speedreading... 28 LeveBStartlp
speedReading... 4 Level->5BC

* StoppingFuncti...

* Limit Values
@D

e

* 551

@ SBC Present |

(@ SBC_during 510 | A_ i
& SBC_after 510

il SBC_after

-
T sbcAfterReplac... T T sbcBeforeRepl..

[l speedReadingSu. [l AddLevel3startUp
[l removeSensor
[AddLevel2Starty... = Other
* SSE = SAR i * 58C * 5MS
slsPlacement (T sbcPhcementd | smsPlacement
slsReplacement shcReplaceme... smsReplacement
shcPlacement Level2 TestSMS
[slsSubstitution
{4 sbcSubstitutionB
[l smsSubstitu
AddLevel2TestSh

\ # SBC_Absent
? Remove tc_sms_.
£ brakePlacementl

[ill removeBrake

@ SBC_before STO |

[ilh SBC_before

Figure 3.3: Feature Diagram of the ABB Safety Module in CVL 1 Feature Diagram Notation

63

Table 3.2: Test Cases for the Simulated ABB Safety Module

Unit-Test Suite Feature
GeneralStartUp SafetyDrive
Level3StartUpTest | Level3
TestSBC_After SBC_after_STO
TestSBC_Before SBC_before_STO
TestSMS SMS

Table 3.3: Two Variants of the ABB Safety Module Named by the Context of its Use

Feature\Product Conveyor Belt | Hoisting Machine
SafetyDrive X X
SafetyModule X X
CommunicationBus X X
SafetyFunctions X X
StoppingFunctions X X
STO X X
SS1 X X
Limit_Values - -
Other X X
SSE X X
SAR - -
SLS - -
SBC - X
SBC_Present - X
SBC_during_STO - -
SBC_after_ STO - -
SBC_before_STO - X
SBC_Absent - -
SMS X -
SIL X X
Level2 X -
Level3 - X

The product line is developed using the CVL 1 tools. The Safety Module simulation is
implemented in UML with action code written in Java. The interface towards UML in Java was
made possible with JavaFrame [70], a target framework for code generation from UML.

Five test cases were specified using sequence diagrams. These test cases are listed in Ta-
ble 3.2 along with the feature they primarily exercise.

There are in total 512 possible configurations of the feature model. Two of these are speci-
fied in Table 3.3, named after the context these specific configurations of the safety module are
used in. These products are, of course, valid configurations of the feature model of the ABB
Safety Module, Figure 3.3.

The ABB Safety Module was used as a case study in Paper 5, in which most details are
included®. Table 3.4a shows the 11 products of the 2-wise covering array of the ABB-case.
Table 3.4b shows the result of running the relevant test cases on these 11 products. The four
gray columns are products that did not build or start. All these four were due to a fault in
the CVL-model. The gray cell of Product 9 indicates a failed test case. This was due to a
dependency that was missing in the product line specification.

3 A resource page was set up that describes how to reproduce the experiments described in the paper.

64

Table 3.4: Test Products and Results for Testing the Safety Module

(a) 2-wise Covering Array (b) Test Errors
Feature\Product 0[1]2]3|4|5(6|7(8(9]10 Test\Product oO(1 {2 (3|4 |5|6|7|8|9]10
SafetyDrive IXIXIXIXIXIXIXIXIXIX| X GeneralStartUp 0 - -10jO0[O]-|-1]0 0
SafetyModule IXIXIXIXIXIXIXIXIXIX X Level3StartUpTest 01]0 01]0 0| 0
CommunicationBus IXIXIXIX XX IXIXXIX] X TestSBC_After 0 -
SafetyFunctions XIXIXIX XX XXX X TestSBC_Before - 0
StoppingFunctions IXIXIXIXIXIXIXIX XX X TestSMS - 00 T
STO IXIXIXIXIXIXIXIX XX X
SS1 - - IXIX] - X - [XIXIX] -
Limit_Values - IXI- X - XXX - |- | X
Other - XX - XIXIXIXIXIX X
SSE -1-1X- |- IXIXIXIX - | -
SAR -IX -] - XIXIX - |- |- | X
SBC - XX - X - [XIXIXIX X
SBC_Present - XIX] - X1 - |- (XX - [X
SBC_after_STO -1-1-1- X=X - 1= -
SBC_during_STO -X-1- 1] [- XD -] -
SBC_before_STO =X - - - X
SBC_Absent -1-1-1-1-1- X -1 - 1X] -
SMS -1- X1 - XX - [- [XIX] -
SLS - XX - - X1 - (X - 1X] -
SIL IXIXIXIXIXIXIXIX XX X
Level2 - - [XIX] - |- (XXX - | -
Level3 IXIX] - [- XX -{ -] - XX

3.6 Tool Support and Integration of Achievements

All of the above achievements are backed by open source tool support. The user manual for
the tools runs through an application to the Eclipse IDEs utilizing most of the contributions dis-
cussed. The user manual with the integrated example is available as Appendix D. It is followed
by a detailed discussion of the application of Automatic CIT to the Eclipse IDEs in Appendix E.

65

Chapter 4

Discussion

This chapter first discusses threats to validity for the contributions in this thesis (Section 4.1)
and then discusses potentials and ideas for future work (Section 4.2).

4.1 Limitations and Threats to Validity

The following four subsections include threats to validity for the contributions. It also covers
threats to validity from the perspective of product line testing as a whole.

Generation of Covering Arrays from Large Feature Models

The ICPL algorithm was a major result of Paper 1 and 2. Several threats to validity can be
noted for these two papers: ICPL was evaluated by a comparison with three other algorithms for
covering array generation. The authors of ICPL are also those who performed the comparison
with the other algorithms. Below we discuss things that might have influenced the result of the
comparison as presented in Paper 2.

* Corpus Selection — The feature model corpus consists of feature models not made by
those who wrote or contributed to the contributions of this thesis. They are all used as
originals except for some minor changes: e.g. slight changes to the IDs due to differences
in what characters an ID can consist of.

ICPL was tuned to perform well on the corpus, while the other algorithms were presum-
ably developed without knowledge of these particular models. It would have been better
to compare all algorithms of a set of feature models none of the developers knew about
in advance.

* Corpus Completeness — No feature models were excluded from the corpus except for
their lack of realism. All feature models the authors were aware of and could verify
the origin of were included in the corpus within the time available for conducting the
experiment.

It is a possibility that the measurements are different given a more extensive corpus. A
more extensive corpus might be required to be representative of realistic feature models
in general.

67

* Adaptors — Some of the tools came with limited documentation. The adaptors that con-
vert from the three formats of feature models in our corpus to input for each of the three
other algorithms were written for the experiment in Paper 2 and are available as open
source. The results produced by each algorithm were confirmed to be complete and valid
by the same, separate algorithms.

It is, however, possible that the adaptors are unfair to the other algorithms, and that the
algorithms would have performed better with more suited converters. Had they been
available from the implementations, they would have been used instead.

* Other Algorithms — There are other algorithms that were not included in the comparison.
This issue was discussed in Section 2.4.4.

* Other Values of t — Empirics were not collected for t-wise testing of ¢ >= 4. One of the
reasons for this is that the sizes of the covering arrays, using any algorithm, then becomes
significantly larger than the number of features in the feature model from which it is
generated. A second reason is that empirics indicate that 95% of bugs can be attributed to
the interaction of 3 features [94]. If the quality requirements are above this level, it is not
yet established that combinatorial interaction testing is the approach that should be taken
in the first place.

Optimized Testing in the Presence of Homogeneous Abstraction
Layers

What are the liabilities in applying our techniques for reapplying test suites for products of a
covering array that differ only in the implementation of homogeneous abstraction layers?

* The solution does not make sense if the abstraction layer contains the union of function-
ality of the implementations. The intersection has to be considerable in order for the
application of this technique to pay off.

* The abstraction layer cannot be too general. For example, the team provider functionality
in Eclipse has multiple implementations: CVS, SVN, git, etc, but the functionality the
implementations offer is different. Thus, one have to supply one test suite per provider,
and that is also what is done in the Eclipse project.

* If one decides to make available implementation-specific behavior in the abstraction layer,
then the benefits of the pattern no longer applies, and one will have to significantly change
the test suites.

* Even though the test cases might be the same for all implementations, the initializations
of the test suites might be different.

Market-Focused Testing based on Weighted Sub-Product Line
Models

A discussion of the limitations and threats to validity were not included in Paper 4 due to space
constraints.

68

 Partial Coverage — The theory of combinatorial interaction testing deals with the benefit
of 100% coverage. If a certain 95% 3-wise coverage is a 100% 2-wise coverage, does it
then have the bug-detection capabilities of 3-wise testing, or just that of 2-wise testing?
TOMRA wanted an answer to this question during our cooperation, but, unfortunately,
we were unable to offer any answer to this. This is a question for future work.

* Better than Manual Configuration by Domain Experts — One of our findings in the
experiments done at TOMRA was that the manually configured products were quite good.
If this is the case, then why do we need theory and automation for doing what they
already accomplish manually? Indeed, maintaining the feature model and the weighted
sub-product line models are not free. Thus, even though the algorithms are fast once these
models are up-to-date, the task of maintaining them might be slower than just manually
updating the test lab by hand.

* Inflexibility — Configuring products by hand has a lot of flexibility. The domain experts
can choose to focus on whatever factors they want. They can react to new requirements
quickly. A fixed algorithm such as those related to the weighted sub-product line models
might not cater for any need they might have. This inflexibility might be a sign the theory
is not comprehensive enough yet and thus not ready for production.

* Difficulty — Understanding the theory of combinatorial interaction testing is not difficult;
however, it does require at least some days of training. This must be recognized by anyone
who will work with or think about it. This is in contrast with the apparent simplicity of
the covering arrays. They are seemingly just a handful of products. The computational
power required to generate them, however; is testament to the complexity that is packed
into those simple results.

Agile and Automatic Product Line Testing

Automatic CIT was never meant to be a final solution for product line testing but rather a com-
plete technique that could form the basis of further improvements or the basis of comparison.
These are some possible issues with the technique as proposed by us:

* Feature Interactions — Feature interactions are behavior that is caused by the combi-
nation of two or more features. Our technique does not specifically test that a feature
interaction between ¢ features (for t-wise testing) interacts correctly with even more fea-
tures.

* Manual Hardware Product Lines — Product line engineering is also used for hardware
systems. Combinatorial interaction testing is also a useful technique to use for these
products lines; however, Automatic CIT is not fully automatic when the products must be
set up manually.

* Quality of the Automatic Tests — The quality of the results of the technique is dependent
on the quality of the automatic tests that are run for the features of the products.

* Feature Interaction Testing — A problem within the field of feature interaction testing
is how to best create tests as to identify interaction faults that occur between two or more
concrete features, the feature interaction problem [20]. Although an important problem,
it is not what our technique is for. Our technique covers all simple interactions and gives
insight into how they work together.

69

4.2 Future Work

4.2.1 Empirical Investigations

Empirical investigations were important for the contributions of this thesis. The work by Kuhn
et al. 2004 [94] form the basis for the arguments in favor of combinatorial interaction testing.
Their investigations are, however, not primarily targeted towards product line testing. Further
work on such empirical investigations has been carried out by Garvin and Cohen 2011 [59] and
Steffens et al. 2012 [146].

The three largest feature models in our collection were presented in and provided by She et
al. 2011 [141]. Their extraction of these feature models provided the basis for the development
of ICPL.

Tartler et al. 2011 [154] and related publications have done interesting experiments on
static analysis and testing of the Linux Kernel that have resulted in identifications of serious
bugs latent in some configurations.

Empirical studies of open source products lines by Berger et al. 2012 [13] show that many
open source product lines are developed using Kconfig. They note that "Kconfig models are
distributed over multiple files, organized according to the source code hierarchy." This aspect is
not usually incorporated into variability models from research.

Our industrial partners were surprised to be confronted with the claim that because they
have a product line, they must also have a problem with faults popping up when a new product
is configured. They did not experience this as a serious problem; they were not convinced that
a lot of effort was needed.

Now, the reason for this might be that they were unaware of the relation between a fault and
product line engineering—that a fault was due to the new configuration triggering some latent
fault. They might have thought that the fault is an ordinary fault and not a member of some new
category of faults caused by the new factors introduced with product line engineering. Indeed,
neither of the companies or the open-source case study describe their development practice as
product line engineering although that certainly is what they are doing.

Further technical advancements in the theory of product line testing depends on what is
found in the empirical investigations, as there is still significantly more to be learned from
them.

For example, an empirical investigation of latent faults in product lines would be valuable.
Such an investigation could either tell us that such faults are actually not a problem, or they
would give us a solid argument as to why product line testing is worthy of industrial attention.
Our industrial experiences gave us a clue that the actuality might be closer towards the former
than currently thought.

4.2.2 Complex Product Lines

Simple product lines are configured by a single feature model, its products are distributed evenly
around its configuration space, and the building of the products is done automatically by a click
of a button. A complex product line, in this context, means a product line with additional
challenges beyond such simple product lines. These complexities are such that techniques de-

70

veloped for the simple product line might not address the complexities in a suitable manner.

Mixed Hardware and Software Product Lines

TOMRA'’s product line of RVMs is a good example of a product line with both hardware and
software variability. In our work with TOMRA, we focused on the hardware variability. The
products of hardware product lines are naturally more difficult to build automatically: The
assembly might require heavy-duty tools and expertise, or expensive robots. However, the
software variability, although linked with the hardware variability, is easy to automatically build
using software tools.

Whereas hardware often requires slow manual tests to be performed, software can be quickly
tested.

The basic question here is how to balance the hardware and software testing to maximize
the fault-detection of the testing effort?

In addition, a single, fixed hardware configuration can still have its software configuration
automatically reconfigured. This brings up interesting questions in regards to covering array
generation optimized to respect this possibility.

Mixed-Variability Systems

Another kind of concern is a product line of which only a few products configured and sold,
but that still leaves a wide range of configurability for the customer or user. This lessens the
product line developers’ ability to check or know about any particular configuration. It actually
becomes more important to exercise the user-variability, while at the same it might seem less
important because only a few products are configured and sold by the developer.

In these cases, variability must be classified as more or less prone to being configured,
something that is not possible to specify using today’s feature models.

High Commonality, Few Products

Some product lines have a certain characteristic: They have a variability model, the products
have a high degree of commonality and there is a huge configuration space; yet, due to the
market situation and the nature of the product line, only a few products are configured and
available for purchase. The company derives benefits from using product line engineering, but,
when they have tested their (say six) products, they have tested every product they will sell for
the foreseeable future.

In these situations, combinatorial interaction testing does not make sense. The technique
derives it benefit from exercising every simple interaction. This is a waste if most of them will
never be used. Still, because of the high degree of commonality, it is wasteful to test every
system independently from scratch.

There should be a term to differentiate these kinds of product lines. We suggest highly,
moderately and sparsely realized product lines, for lower degrees of realization, respectively.

Thus, we can ask the question: How should sparsely realized product lines be tested? Is it
essentially different from testing highly realized product lines? Are there special techniques for
each degree of realization?

71

Optimized Distribution of Test Cases

In our work on automatically testing the Eclipse IDEs or ABB’s Safety Modules, we assumed
that all test cases should be executed when they exercise relevant functionality in a product.
This might, however, be wasteful. This is especially a concern when manual testing is done.

The basic question is: Given that a test case exercises a set of functionality, on which prod-
ucts of a covering array should the test be performed, or, maybe more importantly, where should
they not be performed?

4.2.3 Product Line Engineering

Some opportunities for future work relate to product line engineering. These are opportunities
that are linked to novelties and technologies in product line engineering as such that might
benefit testing.

Distributed Variability Specifications

The Eclipse Project does not model their variability in a centralized way with a single feature
model; they primarily model their variability with distributed fragments throughout the system.
They do, however, for the purpose of automatic building, extract what is essentially a feature
model from the distributed fragments.

This is also observed in the Linux kernel project and in eCos. In both cases, the variability
of a component or a package is specified locally to that component or in that package.

Is testing systems with a distributed variability specification essentially different from test-
ing systems with a centralized variability specification? Are there special properties that can be
exploited in either?

One particular thing that is made easy using distributed variability specifications is depen-
dencies on components within a range of versions. This is difficult in basic feature models
because it would quickly bloat the model making it difficult to make out what it visualizes.
This is commonly solved in, for example, the Eclipse variability specifications by having the
variability specifications of each version separately specified.

Utilizing Implementation Information

A basic feature model is a simple model, and that has its benefit. It is essentialized, captures
variability information and is easy to work with using SAT-solvers and analyzers.

One way to keep feature models simple, but still enhance their powers, is to extract useful
information from the implementation of the product line. We explored one aspect of this in
our work on utilizing homogeneous abstraction layers. There we realized that some alternative
features are alternative because of the presence of a homogeneous abstraction layer. This was
then further used in generating covering arrays and testing the products in it.

We suspect, however, that there are more such things that can be exploited.

Variability models such as CVL, delta-oriented programming and delta modeling can spec-
ify variability on a very fine level of granularity. Variability realization using preprocessors are

72

popular for the Linux kernel and other open source systems. Can these fine-grained, or other
coarse-grained variability realizations, give us additional power when testing?

If such things are not automatically found, maybe they can be annotated on the feature
models directly by the designers of the product line? In our work, we annotated basic feature
models with a "Homogeneous Abstraction Layer"-annotation. This annotation allows tool-
support for marking products that are the same except for the implementations of these layers.
Are there other such useful annotations that can give us further tool support for testing?

Design Principles and SPL Testing

Before it makes sense to do quality assurance, a product line must be well designed. A good
design is a way to avoid problems early in development. When this is in place, however, testing
can be used to validate the system further.

There are a wide range of design principles and patterns in software engineering literature.
Do some of these make the product line easier to test and validate? For example, the Wrapper-
Facade design pattern [138] encapsulates platform specific, non-object-oriented functionality
in a class. This is obviously useful to promote variability of a product line over a variety of
platforms. As a second example, the Release-Reuse Equivalency Principle [104] states that the
granule of reuse should be the granule of release. How does this apply in the context of product
line engineering? How does this level of granularity affect testing?

Questions such as these can be made for many of the relevant principles and patterns.

Exploiting Version Information

Dependencies in the Eclipse IDEs are not just to another feature but also to a range of feature
versions. Such versioned dependencies are difficult to model in a basic feature model and
difficult to graphically visualize.

More importantly however, how do the versions give us information about how to test the
system? Maintaining old versions are important for several reasons. A range of versions might
be installed in offline systems. In addition, older versions might need maintenance because
of customers who do not need or want to upgrade. As with homogeneous abstraction layers,
maybe they can be turned into an advantage?

4.2.4 Algorithms

The opportunities in this subsection are related to algorithmic challenges.

Further Improvements of ICPL

The ICPL algorithm was a significant improvement over previous algorithms for t-wise covering
array generation. We did not, however, rule out further improvements. Can the algorithms be
parallelized further? Complete parallelization would enable large clusters to efficiently run it
without an upper bound. In addition, can the memory requirements due to the storage of all
t-sets be reduced? Is it possible not to store all t-sets? There are many possibilities for further
improvements of ICPL.

73

Upper bound for ICPL

Chviétal’s algorithm is a greedy approximation algorithm for a problem classified as NP-complete
by complexity analysis. A good upper bound was established in Chvatal 1979 [31]. This upper
bound does not apply for ICPL because not all possible configurations are browsed. Instead,
another greedy step is added to construct a single configuration. It would be interesting to know
what is the upper bound guarantee of ICPL (or a similar algorithm), or, alternatively, whether
ICPL can be modified to give it the upper bound guarantee of Chvétal’s algorithm.

Extracting Basic Feature Models

This thesis deals with basic feature models. There are other kinds of feature models with more
complex mechanisms. The work presented in this thesis still applies to more complex feature
modeling mechanisms. Many types of feature models are more complex than basic feature
models. Some promising techniques for testing product lines require a basic feature model;
thus, these techniques cannot be used if a product line is not modeled with a basic feature
model.

Many, more complex types of feature models have been proposed since the introduction of
the notion of a feature model. Many of the powerful mechanisms have been included in the
proposed standard variability language by the OMG, CVL [71]. This standard also introduces
additional complex mechanisms to model variability: non-Boolean Variability, non-Boolean
constraints, cardinality-based feature models [45], recursive variability, contextual constraints,
OCL Constraints, etc.

Enabling the extraction of a basic feature model from a more complex type of feature model
for the purpose of testing would be an interesting topic. This could be both manual and auto-
matic methods to be done by a test engineer. A solution would enable the application of some
promising techniques for testing product lines when a product line is modeled using a more
complex type of feature model. The test engineer may, however, in some situations, have to
conclude that extracting a basic feature model for the purpose of testing is simply not purpose-
ful.

Evolving Covering Arrays

When a software product line evolves, the products of an old covering array might no longer
cover the simple interactions of the product line. Thus, a new test suite must be generated.
Currently, no algorithm exists for minimizing the difference between the old and new test prod-
ucts, causing the new test suite to be unnecessarily different from the old test suite. This causes
unnecessary effort in co-evolving a test suite with an evolving product line.

It would be good to have an efficient algorithm for incremental evolution of test products
with an evolving product line. This would reduce effort in maintaining a test suite when a prod-
uct line evolves. The efficiency could be demonstrated with an experiment on realistic feature
models that were realistically evolved. Well-documented evolutions exist for, for example, the
Linux kernel and the Eclipse IDEs.

74

4.2.5 Engineering

These opportunities are not so much related to novel research, but might spawn some inter-
esting research challenges that need solving. At the face of it, these challenges are currently
demanding engineering tasks.

Using Virtual Machines

While the testing of a system running on a single platform can be carried out on that platform,
testing systems for various platforms in a uniform and automatic way cannot be done easily on
a single platform. Today, good virtual machine technology exists. This enables the execution
and control of systems running in other operating systems and hardware architectures.

To fully test, for example, the Eclipse IDEs or the Linux kernel, a variety of virtual machines
could be automatically set up with the right configuration. Eclipse and Linux could then be
automatically installed on these virtual machines and tested.

Full Testing of the Eclipse IDEs

Setting up a full-scale production test of the Eclipse IDEs should be possible given the experi-
ments carried out in Paper 5 of this thesis. This requires some engineering work, some domain
experts, hardware or virtual machines.

We think that such an application would be an interesting case study from which we could
learn something about large-scale product line testing in practice.

It could also be a demonstration worth looking at for other developers of industrial product
lines for whether they should adapt such techniques for their product line. In the end, a demon-
stration that something actually works on a large-scale is an argument you cannot ignore.

75

Chapter 5

Conclusion

This chapter concludes Part I of the thesis by summarizing the results and their main evaluations.

5.1 Results

In this thesis, we contributed to the testing of product lines of industrial size by advancing
combinatorial interaction testing (CIT).

Existing applied techniques such as reusable component testing, does not exercise feature
interactions. There are many suggestions of how to test feature interactions. Based on the
background and related work, and taking into account the industrial case studies, combinatorial
interaction testing (CIT) emerged as the most promising approach. The primary reasons were
that 1) the technique does address the issue of interaction testing and 2) the technique can be
applied within the current work-flows established; it does not require a significant change in
development practices. This enables us to, for example, apply the technique of Contribution 5
to the entire part of the Eclipse IDE product line supported by the Eclipse project with a small
workforce.

Contribution 1 and 2 culminated in the ICPL algorithm. ICPL is a covering array genera-
tion algorithm that can generate covering arrays for the larger product lines. In particular, it was
the first algorithm to generate a pair-wise covering array for the Linux Kernel feature model,
one of the largest product lines whose feature model is available.

Having a scalable algorithm for covering array generation encourages further advancements
of combinatorial interaction testing for product lines. We contributed three advancements: Uti-
lization of homogeneous abstraction layers for oracles, market-focused CIT and automatic CIT.

Contribution 3: Many product lines utilize homogeneous abstraction layers to get a uni-
form interface to a multitude of similar systems. We showed how such layers could be exploited
to improve product line testing. In a covering array generated from a product line with such ab-
straction layers, test suites can be reused for products that differ only in the implementation
of one or more homogeneous abstraction layers. Further, these repeated executions of the test
suites allows for a voting oracle or taking one of the executions to be a gold standard oracle.

Contribution 4: Sub-product line models were contributed for modeling the market situa-
tion of a product line. Associated algorithms allow covering arrays to be adapted to, optimized
for and evolved with the market situation. The market situation can model the customer priority

77

or criticality. They can model the expectations and make testing of what will be the situation in
the future.

Contribution 5: The automatic CIT technique filled in what was missing to make CIT
automatic. Test for parts of a product line can be reused to test interaction among the features.
Rerunning existing tests on each applicable product of the covering array of a product line
does give us some insight into the simple interaction among the features. Such tests are often
developed for product lines and are thus readily available even for existing product lines. This
allowed us to, for example, apply the technique in full to the part of the Eclipse IDE product
line supported by the Eclipse project.

Tool support: Tools were implemented with the contributed algorithms and techniques.
These tools are available freely as open source under the EPL v1.0 license.

5.2 Evaluation

Contribution 1 and 2: The ICPL algorithm was evaluated by comparing it to three other al-
gorithms from the research community and one of our previous algorithms. The five algorithms
were executed on 19 existing, realistic feature models. The following was concluded from this
evaluation:

ICPL generates covering arrays of an acceptable size, comparable to other state of the art
algorithms. Even though it is non-deterministic, there is little to none variance between execu-
tions. It is faster than the other algorithms; for 2-wise testing, it was estimated to be 1,000 times
faster than the second fastest algorithm for an industrially sized feature model. In addition, al-
though MoSo-PoLiTe was the second fastest, its covering array sizes were larger than the other
algorithms. For 3-wise testing, ICPL was found to be almost 30,000 times faster than the second
fastest for a feature model of industrial size. Note that these factors grow as the feature model
gains more features; however, the example here is one of the largest known feature models.

The three advancements of CIT were evaluated by the application of them to four industrial
case studies; the open source system allowed us to document our results and provide repro-
ducible results.

Contribution 3: Two of our case studies had homogeneous abstraction layers with which
we could experiment with our related contribution. In the Finale case study, if we want to
exercise all pairs of interactions, all products containing a version of client-side Windows paired
with a version of an accounting system, then we need at least 6 * 18 = 108 products. Indeed,
the pair-wise covering array contains 116 products. If we group together those products that
only differ below a homogeneous abstraction layer, we reduce the number to 60. Unfortunately,
details of this experiment are unavailable for documentation.

To provide a documented experiment, we did apply the technique to the Eclipse IDEs. In
total, they support 16 combinations of hardware, windowing systems and operating systems.
The pair-wise covering array of a certain sub-set of the Eclipse IDEs was 41 products. Out of
these, only 20 groups of products need to have unique test suites. Internally in the groups, the
products differ only beneath the homogeneous abstraction layers. Covering the system with
1-wise testing gives 10 products, but only 5 test suites are required. For 3-wise testing, with
119 configurations, only 45 test suites are required.

78

Contribution 4: The main experiment with weighted sub-product line models and associ-
ated algorithms was the TOMRA case study. This means that the experiments are not repro-
ducible. The feature model of the TOMRA case has 68 features (which yield 435,808 possible
configurations) TOMRA’s existing lab had 12 products manually configured by domain experts.
The experiments centered on these products. We found that: (1) The domain experts found that
covering arrays generated from the weighted models were more familiar to them and were
closer to products found in the market. (2) Their existing lab had higher weight coverage than
t-set coverage. (3) Significantly fewer products were needed than they currently had to achieve
the same weight coverage. (4) Finally, the domain experts found the suggestions given by the
incremental evolution algorithm to be good and relevant.

We supplemented this commercial case with an application to the Eclipse IDEs. It was
simpler, but it is at least documented openly and reproducibly. Based on download statistics
of the 12 Eclipse IDE products offered for download, we found that 4 products are needed to
achieve 95% weight coverage.

Contribution 5: The full Automatic CIT technique was applied to two industrial product
lines: First of all, it was applied to a simulated version of the ABB safety module. The feature
model had 22 features and yielded 640 possible products in the original experiment (512 in a
corrected version). Of these configurations, the pair-wise covering array consisted of 11 prod-
ucts that when tested with Automatic CIT produced five test failures. These failures revealed
two bugs as identified by the creators of the simulated version of the safety module.

Automatic CIT was also applied to the part of the Eclipse IDEs supported by the Eclipse
Project. This is one of the largest documented applications of a product line testing technique.
We created a feature model for the part of the Eclipse IDEs supported by the Eclipse Project.
The feature model consisted of 22 features. We implemented Automatic CIT for the Eclipse
Platform plug-in system, and we created a feature mapping for 36 existing test suites. This
experiment consisted of 40,744 tests and resulted in 417,293 test results. Out of these, 513
failures were produced that are probably caused by interaction faults.

79

Bibliography

[1] ABB. ABB industrial drives - Safety functions module for extending applica-
tion safety. http://www05.abb.com/global/scot/scot201l.nsf/
veritydisplay/cff4al5410027401cl1257aef003b7bc7/S$file/
16645_FSO-11_flyer EN_3AUA0000116739_RevB_lowres.pdf, 2013.

[2] Hiralal Agrawal, Joseph R. Horgan, Edward W. Krauser, and Saul London. Incremental
regression testing. In Proceedings of the Conference on Software Maintenance, ICSM
’93, pages 348-357, Washington, DC, USA, 1993. IEEE Computer Society.

[3] Sergej Alekseev, Rebecca Tiede, and Peter Tollkiihn. Systematic approach for using
the classification tree method for testing complex software-systems. In Proceedings of
the 25th conference on IASTED International Multi-Conference: Software Engineering,
SE’07, pages 261-266, Anaheim, CA, USA, 2007. ACTA Press.

[4] Finale Systemer AS. Produktkatalog. http://www.finale.no/
produktkatalog.4828511-165509.html, 2013.

[5] Automated Combinatorial Testing for Software group at NIST, Arlington, Texas, US.
User Guide for ACTS, beta 2 - revision 1.5 edition, December 2011.

[6] J. Bach. Allpairs test case generation tool (version 1.2.1), May 2013.

[7] Don Batory. The design and implementation of hierarchical software systems with
reusable components. ACM Transactions on Software Engineering and Methodology,
1:355-398, 1992.

[8] Don Batory, Peter Hofner, and Jongwook Kim. Feature interactions, products, and com-
position. SIGPLAN Not., 47(3):13-22, October 2011.

[9] Don Batory, Jacob N. Sarvela, Axel Rauschmayer, Student Member, and Student Mem-
ber. Scaling step-wise refinement. IEEE Transactions on Software Engineering, 30,
2003.

[10] Don Batory, Jacob Neal Sarvela, and Axel Rauschmayer. Scaling step-wise refinement.
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, 30(6):2004, 2004.

[11] Don S. Batory. Feature models, grammars, and propositional formulas. In J. Henk Ob-
bink and Klaus Pohl, editors, SPLC, volume 3714 of Lecture Notes in Computer Science,
pages 7-20. Springer, 2005.

81

http://www05.abb.com/global/scot/scot201.nsf/veritydisplay/cff4a15410027401c1257aef003b7bc7/$file/16645_FSO-11_flyer_EN_3AUA0000116739_RevB_lowres.pdf
http://www05.abb.com/global/scot/scot201.nsf/veritydisplay/cff4a15410027401c1257aef003b7bc7/$file/16645_FSO-11_flyer_EN_3AUA0000116739_RevB_lowres.pdf
http://www05.abb.com/global/scot/scot201.nsf/veritydisplay/cff4a15410027401c1257aef003b7bc7/$file/16645_FSO-11_flyer_EN_3AUA0000116739_RevB_lowres.pdf
http://www.finale.no/produktkatalog.4828511-165509.html
http://www.finale.no/produktkatalog.4828511-165509.html

[12] Kent Beck. Test Driven Development: By Example. Addison-Wesley Longman Publish-
ing Co., Inc., Boston, MA, USA, 2002.

[13] Thorsten Berger, Steven She, Rafael Lotufo, Andrzej Wasowski, and Krzysztof Czar-
necki. Variability modeling in the systems software domain. Technical Report GS-
DLAB-TR 2012-07-06, Generative Software Development Laboratory, University of
Waterloo, 2012. journal submission under review.

[14] Antonia Bertolino, Alessandro Fantechi, Stefania Gnesi, and Giuseppe Lami. Product
line use cases: Scenario-based specification and testing of requirements. In Kékold and
Dueiias [90], pages 425-445.

[15] Antonia Bertolino and Stefania Gnesi. Use case-based testing of product lines. SIGSOFT
Softw. Eng. Notes, 28(5):355-358, 2003.

[16] Antonia Bertolino and Stefania Gnesi. Pluto: A test methodology for product families.
In van der Linden [162], pages 181-197.

[17] Armin Biere and Wolfgang Kunz. Sat and atpg: Boolean engines for formal hard-
ware verification. In Proceedings of the 2002 IEEE/ACM international conference on
Computer-aided design, ICCAD ’02, pages 782—-785, New York, NY, USA, 2002. ACM.

[18] Robert V. Binder. Testing object-oriented systems: models, patterns, and tools. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1999.

[19] Jan Bosch and Jaejoon Lee, editors. Software Product Lines: Going Beyond - 14th
International Conference, SPLC 2010, Jeju Island, South Korea, September 13-17, 2010.
Proceedings, volume 6287 of Lecture Notes in Computer Science. Springer, 2010.

[20] T.F. Bowen, FS Dworack, C.H. Chow, N. Griffeth, G.E. Herman, and Y.J. Lin. The fea-
ture interaction problem in telecommunications systems. In Software Engineering for
Telecommunication Switching Systems, 1989. SETSS 89., Seventh International Confer-
ence on, pages 59—-62. IET, 1989.

[21] Renée C. Bryce and Charles J. Colbourn. Prioritized interaction testing for pair-wise
coverage with seeding and constraints. Information and Software Technology, 48(10):960
- 970, 2006. Advances in Model-based Testing.

[22] Isis Cabral, Myra B. Cohen, and Gregg Rothermel. Improving the testing and testability
of software product lines. In Bosch and Lee [19], pages 241-255.

[23] Andrea Calvagna and Angelo Gargantini. A logic-based approach to combinatorial test-
ing with constraints. In Bernhard Beckert and Reiner Héhnle, editors, Tests and Proofs,
volume 4966 of Lecture Notes in Computer Science, pages 66—83. Springer Berlin / Hei-
delberg, 2008. 10.1007/978-3-540-79124-9_6.

[24] Andrea Calvagna and Angelo Gargantini. Combining satisfiability solving and heuris-
tics to constrained combinatorial interaction testing. In Catherine Dubois, editor, Tests
and Proofs, volume 5668 of Lecture Notes in Computer Science, pages 27-42. Springer
Berlin / Heidelberg, 2009.

82

[25] Andrea Calvagna and Angelo Gargantini. Ipo-s: Incremental generation of combinatorial
interaction test data based on symmetries of covering arrays. Software Testing Verifica-
tion and Validation Workshop, IEEE International Conference on, 0:10-18, 2009.

[26] Andrea Calvagna and Angelo Gargantini. A formal logic approach to constrained combi-
natorial testing. Journal of Automated Reasoning, 45:331-358, 2010. 10.1007/s10817-
010-9171-4.

[27] Andrea Calvagna, Angelo Gargantini, and Paolo Vavassori. Combinatorial interaction
testing with citlab. In Sixth IEEE International Conference on Software Testing, Verifi-
cation and Validation, Proceedings of, 2013.

[28] Andrea Calvagna, Angelo Gargantini, and Paolo Vavassori. Combinatorial testing for
feature models using citlab. In The 2nd International Workshop on Combinatorial Testing
(IWCT 2013), Proceedings of, 2013.

[29] Andrea Calvagna, Giuseppe Pappalardo, and Emiliano Tramontana. A novel approach
to effective parallel computing of t-wise covering arrays. In Proceedings of the 2012
IEEE 21st International Workshop on Enabling Technologies: Infrastructure for Collab-
orative Enterprises, WETICE 12, pages 149—-153, Washington, DC, USA, 2012. IEEE
Computer Society.

[30] Philip Chong and Mukul Prasad. Satisfiability for atpg: Is it easy?, 1998.

[31] Véaclav Chvatal. A greedy heuristic for the Set-Covering problem. Mathematics of Op-
erations Research, 4(3):233-235, 1979.

[32] Harald Cichos, Sebastian Oster, Malte Lochau, and Andy Schiirr. Model-based coverage-
driven test suite generation for software product lines. In Proceedings of the 14th inter-

national conference on Model driven engineering languages and systems, MODELS’11,
pages 425-439, Berlin, Heidelberg, 2011. Springer-Verlag.

[33] Dave Clarke, Michiel Helvensteijn, and Ina Schaefer. Abstract delta modeling. SIGPLAN
Not., 46(2):13-22, October 2010.

[34] Alistair Cockburn. Writing Effective Use Cases. Addison-Wesley Professional, January
2000.

[35] D. M. Cohen, S. R. Dalal, A. Kajla, and G. C. Patton. The automatic efficient tests
generator. In Fifth IEEE International Symposium on Software Reliability Engineering,
Proceedings of, page 303-309, 1994.

[36] David Cohen, Ieee Computer Society, Siddhartha R. Dalal, Michael L. Fredman, and
Gardner C. Patton. The aetg system: An approach to testing based on combinatorial
design. IEEFE Transactions on Software Engineering, 23:437-444, 1997.

[37] David M. Cohen, Siddhartha R. Dalal, Jesse Parelius, and Gardner C. Patton. The combi-
natorial design approach to automatic test generation. /[EEE Softw., 13(5):83-88, Septem-
ber 1996.

83

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

84

Myra B. Cohen. Designing test suites for software interaction testing. PhD thesis, The
University of Auckland, 2004.

Myra B. Cohen, Charles J. Colbourn, and Alan C. H. Ling. Augmenting simulated
annealing to build interaction test suites. In Proceedings of the 14th International Sym-
posium on Software Reliability Engineering, ISSRE ’03, pages 394—, Washington, DC,
USA, 2003. IEEE Computer Society.

Myra B. Cohen, Matthew B. Dwyer, and Jiangfan Shi. Coverage and adequacy in soft-
ware product line testing. In ROSATEA "06: Proceedings of the ISSTA 2006 workshop
on Role of software architecture for testing and analysis, pages 53—63, New York, NY,
USA, 2006. ACM.

Myra B. Cohen, Matthew B. Dwyer, and Jiangfan Shi. Interaction testing of highly-
configurable systems in the presence of constraints. In ISSTA '07: Proceedings of the

2007 international symposium on Software testing and analysis, pages 129-139, New
York, NY, USA, 2007. ACM.

Myra B. Cohen, Matthew B. Dwyer, and Jiangfan Shi. Constructing interaction test suites
for highly-configurable systems in the presence of constraints: A greedy approach. IEEE
Transactions on Software Engineering, 34:633-650, 2008.

Myra B. Cohen, Peter B. Gibbons, Warwick B. Mugridge, and Charles J. Colbourn.
Constructing test suites for interaction testing. In Lori A. Clarke, Laurie Dillon, and
Walter F. Tichy, editors, ICSE, pages 38—48. IEEE Computer Society, 2003.

Charles J. Colbourn and Myra B. Cohen. A deterministic density algorithm for pairwise
interaction coverage. In Proc. of the IASTED Intl. Conference on Software Engineering,
pages 242-252, 2004.

Krzysztof Czarnecki, Simon Helsen, and Ulrich W. Eisenecker. Formalizing cardinality-
based feature models and their specialization. Software Process: Improvement and Prac-
tice, 10(1):7-29, 2005.

Jacek Czerwonka. Pairwise testing in real world. In Proceedings of 24th Pacific North-
west Software Quality Conference, 2006, 2006.

Leonardo Mendonca de Moura, Sam Owre, Harald Ruef3, John M. Rushby, Natarajan
Shankar, Maria Sorea, and Ashish Tiwari. Sal 2. In Rajeev Alur and Doron Peled, editors,
CAV, volume 3114 of Lecture Notes in Computer Science, pages 496-500. Springer,
2004.

DIMACS. Satisfiability Suggested Format. Technical report, Center for Discrete Math-
ematics and Theoretical Computer Science, 1993.

Michael Dukaczewski, Ina Schaefer, Remo Lachmann, and Malte Lochau.
Requirements-based delta-oriented spl testing. In Product Line Approaches in Software
Engineering (PLEASE), 2013 4th International Workshop on, 2013.

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

Emelie Engstrom, Per Runeson, and Mats Skoglund. A systematic review on regression
test selection techniques. Inf. Softw. Technol., 52(1):14-30, January 2010.

Erich Gamma. How (7 years of) eclipse changed my views on software de-
velopment. http://gconlondon.com/dl/gcon-london-2008/slides/
ErichGamma_gcon2008.pdf, 2008.

Erich Gamma, Richard Helm, Ralph E. Johnson, and John Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley, Reading, MA, 1995.

Dharmalingam Ganesan, Jens Knodel, Ronny Kolb, Uwe Haury, and Gerald Meier. Com-
paring costs and benefits of different test strategies for a software product line: A study
from testo ag. In Proceedings of the 11th International Software Product Line Confer-
ence, pages 74—83, Washington, DC, USA, 2007. IEEE Computer Society.

Dharmalingam Ganesan, Mikael Lindvall, David McComas, Maureen Bartholomew,
Steve Slegel, Barbara Medina, Rene Krikhaar, and Chris Verhoef. An analysis of unit
tests of a flight software product line. Science of Computer Programming, 2012.

Michael R. Garey and David S. Johnson. Computers and Intractability; A Guide to the
Theory of NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1990.

Angelo Gargantini and Paolo Vavassori. Citlab: A laboratory for combinatorial interac-
tion testing. In Proceedings of the 2012 IEEE Fifth International Conference on Software
Testing, Verification and Validation, ICST *12, pages 559-568, Washington, DC, USA,
2012. IEEE Computer Society.

Brady J. Garvin and Myra B. Cohen. Feature interaction faults revisited: An exploratory
study. In Proceedings of the 22nd International Symposium on Software Reliability En-
gineering (ISSRE 2011), November 2011.

Brady J. Garvin, Myra B. Cohen, and Matthew B. Dwyer. An improved meta-heuristic
search for constrained interaction testing. Search Based Software Engineering, Interna-
tional Symposium on, 0:13-22, 2009.

Brady J. Garvin, Myra B. Cohen, and Matthew B. Dwyer. Evaluating improvements
to a meta-heuristic search for constrained interaction testing. Empirical Softw. Engg.,
16:61-102, February 2011.

Hassan Gomaa. Designing software product lines with UML - from use cases to pattern-
based software architectures. ACM, 2005.

Wolfgang Grieskamp, Xiao Qu, Xiangjun Wel, Nicolas Kicillof, and Myra Cohen. Inter-
action coverage meets path coverage by smt constraint solving. In Manuel Nufiez, Paul
Baker, and Mercedes Merayo, editors, Testing of Software and Communication Systems,
volume 5826 of Lecture Notes in Computer Science, pages 97—112. Springer Berlin /
Heidelberg, 2009.

85

http://qconlondon.com/dl/qcon-london-2008/slides/ErichGamma_qcon2008.pdf
http://qconlondon.com/dl/qcon-london-2008/slides/ErichGamma_qcon2008.pdf

[62] Matthias Grochtmann and Klaus Grimm. Classification trees for partition testing. Soft-
ware Testing, Verification and Reliability, 3(2):63—-82, 1993.

[63] O. Gruber, BJ Hargrave, J. McAffer, P. Rapicault, and T. Watson. The eclipse 3.0 plat-
form: adopting osgi technology. IBM Systems Journal, 44(2):289-299, 2005.

[64] Arne Haber, Holger Rendel, Bernhard Rumpe, and Ina Schaefer. Delta modeling for
software architectures. In In MBEES, 2011.

[65] R. M. Haralick and G. L. Elliott. Increasing tree search efficiency for constraint satisfac-
tion problems. Artificial Intelligence, 14:263-313, 1980.

[66] Alan Hartman. Software and hardware testing using combinatorial covering suites. In
MartinCharles Golumbic and IrithBen-Arroyo Hartman, editors, Graph Theory, Com-
binatorics and Algorithms, volume 34 of Operations Research/Computer Science Inter-
faces Series, pages 237-266. Springer US, 2005.

[67] Jean Hartmann, Marlon Vieira, and Axel Ruder. A UML-based approach for validating
product lines. In Birgit Geppert, Charles Krueger, and Jenny Li, editors, Proceedings
of the International Workshop on Software Product Line Testing (SPLiT 2004), pages
58-65, Boston, MA, August 2004.

[68] Evelyn Nicole Haslinger, Roberto E. Lopez-Herrejon, and Alexander Egyed. Using fea-
ture model knowledge to speed up the generation of covering arrays. In Proceedings
of the Seventh International Workshop on Variability Modelling of Software-intensive
Systems, VaMoS *13, pages 16:1-16:6, New York, NY, USA, 2013. ACM.

[69] @ystein Haugen, Birger Mgller-Pedersen, Jon Oldevik, Ggran K. Olsen, and Andreas
Svendsen. Adding standardized variability to domain specific languages. In SPLC ’08:
Proceedings of the 2008 12th International Software Product Line Conference, pages
139-148, Washington, DC, USA, 2008. IEEE Computer Society.

[70] Dystein Haugen and Birger Mgller-Pedersen. Javaframe: Framework for java-enabled
modelling. In Proceedings of Ericsson Conference on Software Engineering, 2000.

[71] @ystein Haugen et al Common Variability Language (CVL)—OMG
Revised Submission, August 2012. http://www.omgwiki.org/
variability/lib/exe/fetch.php?id=start&cache=cache&media=
cvl-revised-submission.pdf.

[72] Christopher Henard, Mike Papadakis, Gilles Perrouin, Jacques Klein, Patrick Heymans,
and Yves Le Traon. Bypassing the combinatorial explosion: Using similarity to generate
and prioritize t-wise test suites for large software product lines. CoRR, abs/1211.5451,
2012.

[73] A. Hervieu, B. Baudry, and A. Gotlieb. Pacogen: Automatic generation of pairwise test
configurations from feature models. In Software Reliability Engineering (ISSRE), 2011
IEEE 22nd International Symposium on, pages 120—129. IEEE, 2011.

86

http://www.omgwiki.org/variability/lib/exe/fetch.php?id=start&cache=cache&media=cvl-revised-submission.pdf
http://www.omgwiki.org/variability/lib/exe/fetch.php?id=start&cache=cache&media=cvl-revised-submission.pdf
http://www.omgwiki.org/variability/lib/exe/fetch.php?id=start&cache=cache&media=cvl-revised-submission.pdf

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

IEEE. IEEE 90: IEEE Standard Glossary of Software Engineering Terminology. 1EEE,
1990.

Daniel Jackson. Alloy: a lightweight object modelling notation. ACM Trans. Softw. Eng.
Methodol., 11(2):256-290, April 2002.

Bob Jenkins. jenny: a pairwise testing tool, May 2013.

Martin Fagereng Johansen, @ystein Haugen, and Franck Fleurey. A Survey of Empirics
of Strategies for Software Product Line Testing. In Lisa O’Conner, editor, Proceedings
of the 2011 IEEE Fourth International Conference on Software Testing, Verification and
Validation Workshops, ICSTW 11, pages 266-269, Washington, DC, USA, 2011. IEEE
Computer Society.

Martin Fagereng Johansen, @ystein Haugen, and Franck Fleurey. Properties of realistic
feature models make combinatorial testing of product lines feasible. In Jon Whittle,
Tony Clark, and Thomas Kuehne, editors, Proceedings of Model Driven Engineering
Languages and Systems, 14th International Conference, MODELS 2011, pages 638—652,
Wellington, New Zealand, October 2011. Springer, Heidelberg.

Martin Fagereng Johansen, @ystein Haugen, and Franck Fleurey. An Algorithm for Gen-
erating t-wise Covering Arrays from Large Feature Models. In Vander Alves and Andre
Santos, editors, Proceedings of the 16th International Software Product Line Conference
(SPLC 2012). ACM, 2012.

Martin Fagereng Johansen, @ystein Haugen, and Franck Fleurey. Bow Tie Testing - A
Testing Pattern for Product Lines. In Paris Avgeriou, editor, Proceedings of the 16th

Annual European Conference on Pattern Languages of Programming (EuroPLoP 2011).
ACM, 2012.

Martin Fagereng Johansen, @ystein Haugen, Franck Fleurey, Erik Carlson, Jan Endresen,
and Tormod Wien. A Technique for Agile and Automatic Interaction Testing for Prod-
uct Lines. In Brian Nielsen and Carsten Weise, editors, Proceedings of The 23rd IFIP
International Conference on Testing Software and Systems (ICTSS’12), pages 39-54.
Springer, 2012.

Martin Fagereng Johansen, @Qystein Haugen, Franck Fleurey, Anne Grete Eldegard, and
Torbjgrn Syversen. Generating Better Partial Covering Arrays by Modeling Weights on
Sub-Product Lines. In Robert France, Juergen Kazmeier, Colin Atkinson, and Ruth Breu,
editors, Proceedings of Model Driven Engineering Languages and Systems, 15th Inter-
national Conference, MODELS 2012, Innsbruck, Austria, September 2012. Springer.

Paul C. Jorgensen. Software Testing: A Craftsman’s Approach, Third Edition. AUER-
BACH, 3 edition, 2008.

Erik Kamsties, Klaus Pohl, Sacha Reis, and Andreas Reuys. Testing variabilities in use
case models. In van der Linden [162], pages 6—18.

87

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

88

Erik Kamsties, Klaus Pohl, and Andreas Reuys. Supporting test case derivation in do-
main engineering. In Proceedings of the Seventh World Conference on Integrated Design
and Process Technology (IDPT-2003). Society for Design and Process Science (SDPS),
2003.

K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peterson. Feature-oriented
domain analysis (foda) feasibility study. Technical report, Carnegie-Mellon University
Software Engineering Institute, November 1990.

Christian Késtner, Sven Apel, Syed Saif ur Rahman, Marko Rosenmiiller, Don Batory,
and Gunter Saake. On the impact of the optional feature problem: analysis and case
studies. In Proceedings of the 13th International Software Product Line Conference,
SPLC ’09, pages 181-190, Pittsburgh, PA, USA, 2009. Carnegie Mellon University.

Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Lopes, Jean-
Marc Loingtier, and John Irwin. Aspect-oriented programming. Springer, 1997.

Chang Hwan Peter Kim, Don S. Batory, and Sarfraz Khurshid. Reducing combinatorics
in testing product lines. In Proceedings of the tenth international conference on Aspect-
oriented software development, AOSD 11, pages 57-68, New York, NY, USA, 2011.
ACM.

Timo K&kold and Juan C. Dueias, editors. Software Product Lines - Research Issues in
Engineering and Management. Springer, Berlin, Heidelberg, 2006.

Mohammad F. J. Klaib, Kamal Zuhairi Zamli, Nor Ashidi Mat Isa, Mohammed I. Younis,
and Rusli Abdullah. G2way a backtracking strategy for pairwise test data generation. In
APSEC, pages 463—-470. IEEE, 2008.

Ronny Kolb. A risk-driven approach for efficiently testing software product lines.
In Net.ObjectDays 2003. Workshops. Industriebeitriige - Tagungsband : Offizielle
Nachfolge-Veranstaltung der JavaDays, STJA, JIT, DJEK, pages 409—-414, 2003.

Matthias Kowal, Sandro Schulze, and Ina Schaefer. Towards efficient spl testing by
variant reduction. In Proceedings of the 4th international workshop on Variability &
composition, VariComp ’13, pages 1-6, New York, NY, USA, 2013. ACM.

D. Richard Kuhn, Dolores R. Wallace, and Albert M. Gallo. Software fault interac-
tions and implications for software testing. IEEE Transactions on Software Engineering,
30(6):418-421, 2004.

Sean Quan Lau. Domain analysis of e-commerce systems using feature-based model
templates. Master’s thesis, ECE Department, University of Waterloo, Canada, 2006.

Y. Lei, R. Kacker, D.R. Kuhn, V. Okun, and J. Lawrence. Ipog: A general strategy for t-
way software testing. In Engineering of Computer-Based Systems, 2007. ECBS’07. 14th
Annual IEEE International Conference and Workshops on the, pages 549-556. 1EEE,
2007.

[97]

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

Yu Lei, Raghu Kacker, D. Richard Kuhn, Vadim Okun, and James Lawrence. Ipog-ipog-
d: efficient test generation for multi-way combinatorial testing. Softw. Test. Verif. Reliab.,
18(3):125-148, September 2008.

Yu Lei and Kuo-Chung Tai. In-parameter-order: A test generation strategy for pairwise
testing. In The 3rd IEEE International Symposium on High-Assurance Systems Engineer-
ing, HASE °98, pages 254-261, Washington, DC, USA, 1998. IEEE Computer Society.

Jorg Liebig, Alexander von Rhein, Christian Kistner, Sven Apel, Jens Dorre, and Chris-
tian Lengauer. Scalable analysis of variable software. In Proceedings of the European
Software Engineering Conference and ACM SIGSOFT Symposium on the Foundations of
Software Engineering (ESEC/FSE), New York, NY, 8 2013. to appear; accepted 30 May
2013.

S. Lity, M. Lochau, I. Schaefer, and U. Goltz. Delta-oriented model-based spl regres-
sion testing. In Product Line Approaches in Software Engineering (PLEASE), 2012 3rd
International Workshop on, pages 53-56, 2012.

Jia Liu, Don Batory, and Christian Lengauer. Feature oriented refactoring of legacy ap-
plications. In Proceedings of the 28th international conference on Software engineering,
ICSE °06, pages 112-121, New York, NY, USA, 2006. ACM.

Malte Lochau, Ina Schaefer, Jochen Kamischke, and Sascha Lity. Incremental model-
based testing of delta-oriented software product lines. In Achim D. Brucker and Jacques
Julliand, editors, TAP, volume 7305 of Lecture Notes in Computer Science, pages 67-82.
Springer, 2012.

Roberto E. Lopez-herrejon and Don Batory. A standard problem for evaluating product-
line methodologies. In Proc. 2001 Conf. Generative and Component-Based Software
Eng, pages 10-24. Springer, 2001.

R.C. Martin. Engineering notebook: Granularity. C++ Report, 8:57-57, 1996.

M. Mendonca. Efficient Reasoning Techniques for Large Scale Feature Models. PhD
thesis, School of Computer Science, University of Waterloo, Jan 2009.

M. Mendonca, A. Wasowski, and K. Czarnecki. Sat-based analysis of feature models is
easy. In Proceedings of the 13th International Software Product Line Conference, pages
231-240. Carnegie Mellon University, 2009.

A. Metzger, K. Pohl, S. Reis, and A. Reuys. Model-based testing of software product
lines. In In Proceedings of the 7th Intl. Conference on Software Testing (ICSTEST), 2006.

Glenford J. Myers. The Art of Software Testing, Second Edition. Wiley, 2 edition, 2004.

Changhai Nie and Hareton Leung. A survey of combinatorial testing. ACM Comput.
Surv., 43:11:1-11:29, February 2011.

89

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

90

Kari J Nurmela and Patric RJ Ostergard. Constructing covering designs by simulated
annealing. Helsinki University, Digital Systems Laboratory, 1993.

Object Management Group (OMG). OMG Meta Object Facility (MOF) Core Specifica-
tion, Version 2.4.1. Technical report, Object Management Group (OMG), August 2011.

Object Management Group (OMG). OMG MOF 2 XMI mapping specification. Techni-
cal report, Object Management Group (OMG), August 2011.

Erika Mir Olimpiew. Model-based testing for software product lines. PhD thesis, George
Mason University, Fairfax, VA, USA, 2008. AAI3310145.

S. Oster, A. Wiibbeke, G. Engels, and A. Schiirr. Model-Based Software Product Lines
Testing Survey. In J. Zander, I. Schieferdecker, and P. Mosterman, editors, Model-based
Testing for Embedded Systems. CRC Press/Taylor & Francis, 2010. to appear, accepted
for application.

Sebastian Oster. Feature Model-based Software Product Line Testing. PhD thesis, Tech-
nische Universitiat Darmstadt, 2012.

Sebastian Oster. flattening algorithm, May 2013.

Sebastian Oster, Florian Markert, and Philipp Ritter. Automated incremental pairwise
testing of software product lines. In Bosch and Lee [19], pages 196-210.

Sebastian Oster, Florian Markert, Andy Schiirr, and Werner Miiller. Integrated modeling
of software product lines with feature models and classification trees. In Proceedings
of the 13th International Software Product Line Conference (SPLC 2009). MAPLE 2009
Workshop Proceedings. Springer, Heidelberg, 2009.

Sebastian Oster, Marius Zink, Malte Lochau, and Mark Grechanik. Pairwise feature-
interaction testing for spls: potentials and limitations. In Proceedings of the 15th Inter-
national Software Product Line Conference, Volume 2, SPLC ’11, pages 6:1-6:8, New
York, NY, USA, 2011. ACM.

Sebastian Oster, Ivan Zorcic, Florian Markert, and Malte Lochau. Moso-polite: tool
support for pairwise and model-based software product line testing. In Patrick Heymans,
Krzysztof Czarnecki, and Ulrich W. Eisenecker, editors, VaMoS, ACM International Con-
ference Proceedings Series, pages 79-82. ACM, 2011.

Thomas J. Ostrand and Marc J. Balcer. The category-partition method for specifying and
generating functional tests. Commun. ACM, 31(6):676-686, 1988.

Carlos Parra, Xavier Blanc, and Laurence Duchien. Context awareness for dynamic
service-oriented product lines. In Proceedings of the 13th International Software Prod-
uct Line Conference, SPLC 09, pages 131-140, Pittsburgh, PA, USA, 2009. Carnegie
Mellon University.

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]
[133]

[134]

[135]

Gilles Perrouin, Sebastian Oster, Sagar Sen, Jacques Klein, Benoit Baudry, and Yves
le Traon. Pairwise testing for software product lines: Comparison of two approaches.
Software Quality Journal, 2011.

Gilles Perrouin, Sagar Sen, Jacques Klein, Benoit Baudry, and Yves le Traon. Auto-
mated and scalable t-wise test case generation strategies for software product lines. In
Proceedings of the 2010 Third International Conference on Software Testing, Verification
and Validation, ICST 10, pages 459—468, Washington, DC, USA, 2010. IEEE Computer
Society.

Klaus Pohl, Giinter Bockle, and Frank J. van der Linden. Software Product Line En-

gineering: Foundations, Principles and Techniques. Springer-Verlag New York, Inc.,
Secaucus, NJ, USA, 2005.

Klaus Pohl and Andreas Metzger. Software product line testing. Commun. ACM,
49(12):78-81, 2006.

The Linux Kernel Project. KBuild Documentation. http://www.kernel.org/
doc/Documentation/kbuild/, 2013. [Online; accessed 30-10-2013].

Sacha Reis, Andreas Metzger, and Klaus Pohl. A reuse technique for performance test-
ing of software product lines. In Proceedings of the SPLC International Workshop on
Software Product Line Testing, page 5—10, 2006.

Andreas Reuys, Erik Kamsties, Klaus Pohl, and Sacha Reis. Model-based system testing
of software product families. Advanced Information Systems Engineering, pages 519—
534, 2005.

Andreas Reuys, Sacha Reis, Erik Kamsties, and Klaus Pohl. Derivation of domain test
scenarios from activity diagrams. In Klaus Schmid and Birgit Geppert, editors, Proceed-
ings of the PLEES’03 International Workshop on Product Line Engineering: The Early
Steps: Planning, Modeling, and Managing, Erfurt, 2003.

Andreas Reuys, Sacha Reis, Erik Kamsties, and Klaus Pohl. The scented method for
testing software product lines. In K&kold and Duefias [90], pages 479-520.

J. Rivieres and W. Beaton. Eclipse Platform Technical Overview, 2006.

Ina Schaefer. Variability Modelling for Model-Driven Development of Software Product
Lines. In Fourth International Workshop on Variability Modelling of Software-intensive
Systems (VaMoS 2010), January 2010.

Ina Schaefer, Lorenzo Bettini, Viviana Bono, Ferruccio Damiani, and Nico Tanzarella.
Delta-oriented programming of software product lines. In Bosch and Lee [19], pages
77-91.

Ina Schaefer, Lorenzo Bettini, and Ferruccio Damiani. Compositional type-checking for
delta-oriented programming. In Proceedings of the tenth international conference on
Aspect-oriented software development, AOSD 11, pages 43-56, New York, NY, USA,
2011. ACM.

91

http://www.kernel.org/doc/Documentation/kbuild/
http://www.kernel.org/doc/Documentation/kbuild/

[136] Ina Schaefer, Alexander Worret, and Arnd Poetzsch-Heffter. A model-based framework
for automated product derivation. In Ist International Workshop on Model-Driven Ap-

proaches in Software Product Line Engineering Goetz Botterweck, Iris Groher, Andreas
Polzer, page 14, 2009.

[137] Kathrin Danielle Scheidemann. Verifying families of system configurations. Shaker,
2008.

[138] D. Schmidt, M. Stal, H. Rohnert, and F. Buschmann. Pattern-Oriented Software Archi-
tecture, Volume 2: Patterns for Concurrent and Networked Objects. Wiley, 2000.

[139] P. Schobbens, P. Heymans, and J.-C. Trigaux. Feature diagrams: A survey and a formal
semantics. In Requirements Engineering, 14th IEEE International Conference, pages
139-148, 2006.

[140] Gerard Schouten. Philips medical systems. In Software Product Lines in Action: The
Best Industrial Practice in Product Line Engineering, pages 233-248. Springer-Verlag
New York, Inc., Secaucus, NJ, USA, 2007.

[141] Steven She, Rafael Lotufo, Thorsten Berger, Andrzej Wasowski, and Krzysztof Czar-
necki. Reverse engineering feature models. In Richard N. Taylor, Harald Gall, and
Nenad Medvidovic, editors, ICSE, pages 461-470. ACM, 2011.

[142] George B. Sherwood, Sosina S. Martirosyan, and Charles J. Colbourn. Covering arrays of
higher strength from permutation vectors. Journal of Combinatorial Designs, 14(3):202—
213, 2006.

[143] T. Shiba, T. Tsuchiya, and T. Kikuno. Using artificial life techniques to generate test
cases for combinatorial testing. In Computer Software and Applications Conference,
2004. COMPSAC 2004. Proceedings of the 28th Annual International, pages 72-77
vol.1, 2004.

[144] Mark Staples and Derrick Hill. Experiences adopting software product line development
without a product line architecture. In Proceedings of the 11th Asia-Pacific Software
Engineering Conference, APSEC ’04, pages 176—183, Washington, DC, USA, 2004.
IEEE Computer Society.

[145] J Stardom. Metaheuristics and the Search for Covering and Packing Arrays. PhD thesis,
Simon Fraser University, 2001.

[146] Michaela Steffens, Sebastian Oster, Malte Lochau, and Thomas Fogdal. Industrial eval-
uation of pairwise spl testing with moso-polite. In Proceedings of the Sixth International
Workshop on Variability Modelling of Software-intensive Systems (VaMoS) 2012, 1 2012.

[147] Vanessa Stricker, Andreas Metzger, and Klaus Pohl. Avoiding redundant testing in ap-
plication engineering. In Bosch and Lee [19], pages 226-240.

92

[148]

[149]

[150]

[151]

[152]

[153]

[154]

[155]

[156]

[157]

[158]

Andreas Svendsen, @ystein Haugen, and Birger Mgller-Pedersen. Analyzing variabil-
ity: capturing semantic ripple effects. In Proceedings of the 7th European conference
on Modelling foundations and applications, ECMFA’11, pages 253269, Berlin, Heidel-
berg, 2011. Springer-Verlag.

Andreas Svendsen, @ystein Haugen, and Birger Mgller-Pedersen. Using variability mod-
els to reduce verification effort of train station models. In Proceedings of the 18th Asia
Pacific Software Engineering Conference (APSEC 2011), Ho Chi Minh City, Vietnam,
2011.

Andreas Svendsen, Ggran K. Olsen, Jan Endresen, Thomas Moen, Erik Carlson, Kjell-
Joar Alme, and @ystein Haugen. The future of train signaling. In Krzysztof Czarnecki,
Ileana Ober, Jean-Michel Bruel, Axel Uhl, and Markus Volter, editors, Model Driven En-
gineering Languages and Systems, volume 5301 of Lecture Notes in Computer Science,
pages 128-142. Springer Berlin Heidelberg, 2008.

Andreas Svendsen, @ystein Haugen, and Xiaorui Zhang. Cvl 1.2 user
guide. http://www.omgwiki.org/variability/lib/exe/fetch.php?
media=cv1ll.2_user_guide.pdf, May 2011.

Andreas Svendsen, Xiaorui Zhang, Roy Lind-Tviberg, Franck Fleurey, @ystein Haugen,
Birger Mgller-Pedersen, and Ggran K. Olsen. Developing a software product line for
train control: A case study of cvl. In Bosch and Lee [19], pages 106—120.

Kuo-Chung Tai and Yu Lei. A test generation strategy for pairwise testing. Software
Engineering, IEEE Transactions on, 28(1):109-111, 2002.

Reinhard Tartler, Daniel Lohmann, Julio Sincero, and Wolfgang Schroder-Preikschat.
Feature consistency in compile-time-configurable system software: facing the linux
10,000 feature problem. In Proceedings of the sixth conference on Computer systems,
EuroSys ’11, pages 47-60, New York, NY, USA, 2011. ACM.

Thomas Thiim, Christian Késtner, Fabian Benduhn, Jens Meinicke, Gunter Saake, , and
Thomas Leich. Featureide: An extensible framework for feature-oriented software de-
velopment. Science of Computer Programming, 2012.

TOMRA ASA. Helping the world recycle. http://www.tomra.com/files/
corporate_brochure_web2.pdf, 2013.

Salvador Trujillo, Don Batory, and Oscar Diaz. Feature refactoring a multi-representation
program into a product line. In Proceedings of the Sth international conference on Gener-
ative programming and component engineering, GPCE *06, pages 191-200, New York,
NY, USA, 2006. ACM.

Yu-Wen Tung and W.S. Aldiwan. Automating test case generation for the new generation
mission software system. In Aerospace Conference Proceedings, 2000 IEEE, volume 1,
pages 431-437 vol.1, 2000.

93

http://www.omgwiki.org/variability/lib/exe/fetch.php?media=cvl1.2_user_guide.pdf
http://www.omgwiki.org/variability/lib/exe/fetch.php?media=cvl1.2_user_guide.pdf
http://www.tomra.com/files/corporate_brochure_web2.pdf
http://www.tomra.com/files/corporate_brochure_web2.pdf

[159]

[160]

[161]

[162]

[163]

[164]

[165]

[166]

[167]

[168]

[169]

94

Mark Utting and Bruno Legeard. Practical Model-Based Testing: A Tools Approach.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2007.

E. Uzuncaova, S. Khurshid, and D. Batory. Incremental test generation for software
product lines. Software Engineering, IEEE Transactions on, 36(3):309 —322, may-june
2010.

Engin Uzuncaova, Daniel Garcia, Sarfraz Khurshid, and Don Batory. Testing soft-
ware product lines using incremental test generation. In ISSRE ’08: Proceedings of
the 2008 19th International Symposium on Software Reliability Engineering, pages 249—
258, Washington, DC, USA, 2008. IEEE Computer Society.

Frank van der Linden, editor. Software Product-Family Engineering, 5th International
Workshop, PFE 2003, Siena, Italy, November 4-6, 2003, Revised Papers, volume 3014
of Lecture Notes in Computer Science. Springer, 2004.

Markus Voelter. Using domain specific languages for product line engineering. In Pro-
ceedings of the 13th International Software Product Line Conference, SPLC *09, pages
329-329, Pittsburgh, PA, USA, 2009. Carnegie Mellon University.

Markus Voelter and Iris Groher. Product line implementation using aspect-oriented and
model-driven software development. In Software Product Line Conference, 2007. SPLC
2007. 11th International, pages 233-242. IEEE, 2007.

Nathan Weston, Ruzanna Chitchyan, and Awais Rashid. A framework for constructing
semantically composable feature models from natural language requirements. In Pro-
ceedings of the 13th International Software Product Line Conference, SPLC *09, pages
211-220, Pittsburgh, PA, USA, 2009. Carnegie Mellon University.

Jules White, Brian Dougherty, Doulas C. Schmidt, and David Benavides. Automated rea-
soning for multi-step feature model configuration problems. In Proceedings of the 13th
International Software Product Line Conference, SPLC °09, pages 11-20, Pittsburgh,
PA, USA, 2009. Carnegie Mellon University.

Alan W Williams. Determination of test configurations for pair-wise interaction cover-
age. In Proceedings of the IFIP TC6/WG6, volume 1, pages 59-74, 2000.

Linbin Yu, Mehra Nourozborazjany, Yu Lei, Raghu N. Kacker, and D. Richard Kuhn.
An efficient algorithm for constraint handling in combinatorial test generation. In Pro-
ceedings of Software Testing, Verification and Validation (ICST), 2013 IEEE Sixth Inter-
national Conference on, March 2013.

Kamal Z. Zamli, Mohammad F. J. Klaib, Mohammed I. Younis, Nor A. Isa, and Rusli
Abdullah. Design and implementation of a T-Way test data generation strategy with
automated execution tool support. Information Sciences, January 2011.

Part 11

Research Papers

95

Chapter 6

Overview of Research Papers

Paper 1: Properties of Realistic Feature Models make Combi-
natorial Testing of Product Lines Feasible

Authors Martin Fagereng Johansen, @ystein Haugen and Franck Fleurey.

Publication Status Published in Model Driven Engineering Languages and Systems - 14th
International Conference, MODELS 2011, Wellington, New Zealand, October 16-21, 2011.
Proceedings by Springer, 2011, pp. 638-652.

Contribution Martin Fagereng Johansen is the main contributor of this paper and has con-
tribute to all parts of it (e.g. ideas, paper writing, tool implementation, all topics of the paper)
responsible for 90% of the work.

Main Topics This paper presents an analysis of covering array generation. Covering array
generation is usually classified as NP-complete on two levels using the techniques of the field
of complexity analysis. The paper studies these two levels and finds that the second level,
equivalent to the Boolean satisfiability problem, classified as an NP-complete problem, is easily
solvable for the cases occurring in practice based on the nature of product line engineering. The
first level is equivalent to the set cover problem (SCP), for which an approximation algorithm
is known. Taken together, the paper concludes that the problem of covering array generation is
tractable in practice for product lines.

To back up these claims, the theoretical consideration are demonstrated as applicable on a
corpus of 19 feature models of realistic product lines. Their sizes are from only 9 features up to
a gigantic 6,888 features and 187,193 clauses in the CNF constraint, one of the largest feature
model known that is also in active use by both computers and human beings for configuring the
Linux kernel. The satisfiability time of the largest feature model is only 125 ms.

Chvdétal’s algorithm for the set cover problem (SCP) is adapted for covering array generation
from realistic feature models, and the speed of generating and the sizes of the resulting covering
arrays for all 19 feature models, strengths 1-4, are presented, where the algorithm succeeds
within a given time on a given computer. This clarifies where improvements can be made for
an algorithm that handles covering array generation for large feature models.

97

Paper 2: An Algorithm for Generating t-wise Covering Arrays
from Large Feature Models

Authors Martin Fagereng Johansen, @ystein Haugen and Franck Fleurey.

Publication Status Published in SPLC ’12: Proceedings of the 16th International Software
Product Line Conference - Volume 1 by ACM, pp. 46-56.

Contribution Martin Fagereng Johansen is the main contributor of this paper and has con-
tribute to all parts of it (e.g. ideas, paper writing, tool implementation, all topics of the paper)
responsible for 90% of the work.

Main Topics The paper builds heavily on the MODELS 201 1-paper. Based on the corpus of
the same 19 realistic feature models and the adaption of Chvétal’s algorithm for covering array
generation for feature models, a new and significantly faster algorithm is proposed. The new
algorithm 1is called ICPL (ICPL is a recursive acronym for "I[CPL Covering array generation
for Product Lines"). In the algorithm, several things are done to avoid redundant work, to learn
from intermediate results and to do some things in parallel.

The algorithm is then compared to three of the major algorithms for generating covering
arrays from feature models and the basic adaption of Chvétal’s algorithm from the MODELS
2011-paper. All of the five compared algorithms were run 100 times for each of the 19 feature
models, for each strength 1-3. The results show that ICPL produces small covering arrays
that are acceptable in size but that it produce them orders of magnitude faster than the other
algorithms. ICPL manages, as the only algorithm in the experiment, to produce 2-wise covering
arrays, not only from the feature model with 287 features, as the second best does, but also
from the feature models with 1,244, 1,396 and 6,888 features. For 3-wise covering arrays, the
algorithm produces covering array for feature models with, not only 101 features, as the second
best can, but also from the feature model with 287. In addition, 3-wise covering arrays, which
cover only included features, are produced the feature models of 1,244 and 1,396 features.

Paper 3: Bow Tie Testing: A Testing Pattern for Product Lines

Authors Martin Fagereng Johansen, @ystein Haugen and Franck Fleurey.

Publication Status Published in Pattern Languages of Programs - 16th European Confer-
ence, Proceedings by ACM, pp. 9:1-9:13.

Contribution Martin Fagereng Johansen is the main contributor of this paper and has con-
tribute to all parts of it (e.g. ideas, paper writing, tool implementation, all topics of the paper)
responsible for 90% of the work.

98

Main Topics The paper presents a way to utilize knowledge of the structure of a product line
in applying combinatorial interaction testing for testing product lines. If a product line has one
or more homogeneous abstraction layers which is also modeled in the feature model as mutually
exclusive alternatives, then the number of test suites required for a covering array generated for
the product line can be reduced, and the same test suites can applied to several of the products
with different implementations of the homogeneous abstraction layer. This allows not only a
reduced effort in creating test suites but also a repeated application of the same test suite to
form a voting oracle. The technique is demonstrated on a subset of the Eclipse IDE product
line where, out of 41 products in the 2-wise covering array, only 20 test suites must be created,
some of which can be applied to nine products, giving a considerable voting oracle.

Paper 4: Generating Better Partial Covering Arrays by Mod-
eling Weights on Sub-Product Lines

Authors Martin Fagereng Johansen, @Qystein Haugen, Franck Fleurey, Anne Grete Eldegard
and Torbjgrn Syversen.

Publication Status Published in Model Driven Engineering Languages and Systems - 15th
International Conference, MODELS 2012, Innsbruck, Austria, September 30-October 5, 2012.
Proceedings by Springer, pp. 269-284.

Contribution Martin Fagereng Johansen is the main contributor of this paper and has con-
tribute to all parts of it (e.g. ideas, paper writing, tool implementation, all topics of the paper)
responsible for 80% of the work. @ystein Haugen contributed to the work on the feature model
and Anne Grete Eldegard and Torbjgrn Syversen contributed to work on the case study.

Main Topics This paper presents an application of combinatorial interaction testing to the
TOMRA Reverse Vending Machine product line, consisting of hardware and software; the ap-
plications was only based on the hardware variability. In order to maximize testing efficiency
at TOMRA, we developed a new kind of model called a weighted sub-product line model that
models partially configured product lines with weights associated with them. These models
were easy to make by domain experts and were close to their way of thinking about the current
market situation. The new models allowed us to do several new and relevant things: First of all,
it allowed us to create partial covering arrays that cover most of the weight, which means, most
relevant according to the current market situation. Secondly, it allowed us to evaluate the current
testing lab at TOMRA to establish that it is made with respect to the market situation but that it
is not made as well as it could have been if made from scratch with the new approach. Lastly,
an algorithm for suggesting small changes to a current test lab enabled incremental adaption of
the test lab according to the changing market situation, modeled in the weighted sub-product
line models.

99

Paper 5: A Technique for Agile and Automatic Interaction
Testing for Product Lines

Authors Martin Fagereng Johansen, @ystein Haugen, Franck Fleurey, Erik Carlson, Jan En-
dresen and Tormod Wien.

Publication Status Published in Testing Software and Systems - 24th IFIP WG 6.1 Interna-
tional Conference, ICTSS 2012, Aalborg, Denmark, November 19-21, 2012. Proceedings by
Springer, pp. 39-54.

Contribution Martin Fagereng Johansen is the main contributor of this paper and has con-
tribute to all parts of it (e.g. ideas, paper writing, tool implementation, all topics of the paper)
responsible for 80% of the work. Erik Carlson, Jan Endresen and Tormod Wien contributed to
the design of the simulation of the safety module and to the specifications of the test cases.

Main Topics The paper presents a new technique for testing product lines and applications of
it on two industrial product lines. The technique is simple and easy to apply to existing product
lines as opposed to the theories behind why it works and the explanation for the good results
it produces. The technique consists of first automatically generating the products defined by a
covering array of some strength and then applying to each product the test suites related to one
or more of the included features. Executing these tests tests the features (or a combination of
features) in the presence or absence of combinations of the other features.

The technique was applied to two industrial cases. In the first case, two actual bugs were
identified. In the second case, many potential bugs were identified. This provides empirical
evidence that not only is the technique applicable, but they also may find bugs without creating
any new test than the existing tests for the systems. The second case was a complete application
to the Eclipse IDE product line: 40,744 existing unit tests created 417,293 test results that,
although passing for one distributed version of the Eclipse IDE, failed 513 times when applied
to the 13 products of the 2-wise covering array of the Eclipse IDE.

Pseudo code for applying the technique to both CVL-based and Eclipse-based product lines
is shown; they are pseudo-code of the implementations actually used in the case studies of the

paper.

100

Chapter 7

Paper 1: Properties of Realistic Feature
Models Make Combinatorial Testing of
Product Lines Feasible

Errata

1. The formula in Section 5.1, F* = M/(t * x), is inaccurate. It should have been ({) 2t =
M/(t x z). Consequently, instead of "= 20, 000 features" on p. 649, it should have been
"=z 14, 143 features".

2. The algorithm on p. 644 does not say that the invalid tuples should only be removed once,
and that is on the given condition. The algorithm still works but is slower. The condition
should have been included in the pseudo-code and was included in the implementation all
along.

3. We wrote on p. 643: "Therefore, for the class of feature models intended to be configured
by humans assisted by computers, which we think at least is a very large part of the
realistic feature models, quick satisfiability is also a property." This is an under-statement
given the argumentation preceding it. It should have been: "Therefore, for realistic feature
models, quick satisfiability is a property."

101

Properties of Realistic Feature Models Make
Combinatorial Testing of Product Lines Feasible

Martin Fagereng Johansen!:?, @ystein Haugen!, and Franck Fleurey!

! SINTEF ICT, Pb. 124 Blindern, 0314 Oslo, Norway
{Martin.Fagereng.Johansen, Oystein.Haugen, Franck.Fleurey}@sintef.no
2 Institute for Informatics, University of Oslo, Pb. 1080 Blindern, 0316 Oslo, Norway

Abstract. Feature models and associated feature diagrams allow mod-
eling and visualizing the constraints leading to the valid products of a
product line. In terms of their expressiveness, feature diagrams are equiv-
alent to propositional formulas which makes them theoretically expensive
to process and analyze. For example, satisfying propositional formulas,
which translates into finding a valid product for a given feature model,
is an NP-hard problem, which has no fast, optimal solution. This theo-
retical complexity could prevent the use of powerful analysis techniques
to assist in the development and testing of product lines. However, we
have found that satisfying realistic feature models is quick. Thus, we
show that combinatorial interaction testing of product lines is feasible
in practice. Based on this, we investigate covering array generation time
and results for realistic feature models and find where the algorithms can
be improved.

Keywords: Software Product Lines, Testing, Feature Models, Practical,
Realistic, Combinatorial Interaction Testing.

1 Introduction

A software product line is a collection of systems with a considerable amount
of code in common. The commonality and differences between the systems are
commonly modeled as a feature model. Testing of software product lines is a
challenge since testing all possible products is intractable. Yet, one has to ensure
that any valid product will function correctly. There is no consensus on how
to efficiently test software product lines, but there are a number of suggested
approaches. Each of the approaches still suffers from problems of scalability
(Section 2).

Combinatorial interaction testing [4] is a promising approach for performing
interaction testing between the features in a product line. Most of the difficulties
of combinatorial interaction testing have been sorted out, but there is one part of
it that is still considered intractable, namely finding a single valid configuration,
an NP-hard problem. This is thus the bottleneck of the approach. In this paper
we resolve this bottleneck such that combinatorial interaction testing should
not be considered intractable any more (Section 3). We then investigate how a

J. Whittle, T. Clark, and T. Kithne (Eds.): MODELS 2011, LNCS 6981, pp. 638-652, 2011.
© Springer-Verlag Berlin Heidelberg 2011 103

On the Feasibility of Combinatorial Testing of Product Lines 639

basic covering array generation algorithm performs on realistic feature models
(Section 4), and suggest, based on the resolution of the bottleneck and on the
empirics, how the algorithm can be improved (Section 5).

2 Background

2.1 Software Product Lines

A software product line (SPL) [19] is a collection of systems with a considerable
amount of code in common. The primary motivation for structuring one’s sys-
tems as a product line is to allow customers to have a system tailored for their
purpose and needs, while still avoiding redundancy of code. It is common for
customers to have conflicting requirements. In that case, it is not even possible
to ship one system for all customers.

The Eclipse products [22] can be seen as a software product line. Today,
Eclipse lists 12 products on their download page!. These products share many
components, but all components are not offered together as one single product.
The reason is that the download would be unnecessary large, since, for exam-
ple, a C++ systems programmer usually does not need to use the PHP-related
features. It would also bloat the system by giving the user many unnecessary
alternatives when, for example, creating a new project. Some products contain
early developer releases of some components, such as Eclipse for modeling. In-
cluding these would compromise the stability for the other products. Thus, it
should be clear why offering specialized products for different use cases is good.

One way to model the commonalities and differences in a product line is using
a feature model [10]. A feature model sets up the commonalities and differences
of a product line in a tree such that configuring the product line proceeds from
the root of the tree. Please refer to an example of a feature model for a subset
of Eclipse in Figure 1. Proceeding from the root, configuring the product line
consists of making a decision for each node in the tree. Each node represents a
feature of the product line. The nature of this decision is modeled as a decoration
on the edges going from a node to another. For example, in Figure 1, one has
to choose one windowing system which one wants Eclipse to run under. This is
modeled as an empty semi-circle on the outgoing edges. When choosing a team
functionality provider, one or all can be chosen. This is modeled as a filled semi
circle. The team functionality itself is marked with an empty circle. This means
that that feature is optional. A filled circle means that the feature is mandatory.
One has to configure the feature model from the root, and one can only include
a feature when the preceding feature is selected. For example, supporting CVS
over SSH requires that one has CVS.

The parts that can be different in the products of a product line are usually
called its variability. One particular product in the product line is called a variant
and is specified by a configuration of the feature model. Such a configuration
consists of specifying whether each feature is included or not.

! http://eclipse.org/downloads/

104

640 M.F. Johansen,). Haugen, and F. Fleurey

EclipseSPL

WindowingSystem [0S} Hardware Team EclipseFileSystem

/\ .
Local i

\Win32| |GTK | [Motif| | Carbon | Cocoa | 0S_Win32] |Linux | |MacOSX| @\x&ﬁ_m\ cvs

Additional Constraints: l} /O\

Carbon A MacOSX A x86 v .)
Cocoa A MacOSX A (xB6 v x86_64) v CVS_Over_SSH| | Subversive | | Subclipse

GTK A Linux A (x86 v x86_64) v

Motif A Linux A x86 Vv
Win32 A OS_Win32 A (x86 v x86_64) (CVS_Over_SSH2| [subclipse_1_4_x | [Subclipse_1_6_x|

Fig. 1. Feature model for a subset of Eclipse

2.2 Software Product Line Testing

Testing a software product line poses a number of new challenges compared to
testing single systems. It has to be ensured that each possible configuration of the
product line functions correctly. One way to validate a product line is through
testing, but testing is done on a running system. The software product line is
simply a collection of many products. One cannot test each possible product,
since the number of products in general grows exponentially with the number of
features in the product line. For the feature model in Figure 1, the number of
possible configurations is 512, and this is a relatively simple product line.

There is no single recommended approach available today for testing product
lines efficiently [5], but there are many suggestions. Some of the more promising
suggestions are combinatorial interaction testing [4], discussed below; reusable
component testing, seen in industry [9], but which does not test for interaction
faults in the product line; a technique called ScenTED, where the idea is to
express the commonalities and differences on the UML model of the product
line and then derive concrete test cases by analyzing it [21]; and incremental
testing, where the idea is to automatically adapt a test case from one product
to the next using the specification of similarities and differences between the
products [25].

2.3 Combinatorial Interaction Testing for Product Lines

Combinatorial interaction testing [4] is one of the most promising approaches.
The benefits of this approach is that it deals directly with the feature model to
derive a small subset of products which can then be tested using single system
testing techniques, of which there are many good ones. The idea is to select a
small subset of products where the interaction faults are most likely to occur.
For example, we can select the subset of all possible products where each pair
of features is present. This includes the cases where both features are present,
when one is present, and when none of the two are present. Table 1 shows the 22
products that must be tested to ensure that every pair-wise interaction between
the features in the running example functions correctly. Each row represents one
feature and every column one product. X’ means that the feature is included

105

On the Feasibility of Combinatorial Testing of Product Lines 641

Y

for the product, -> means that the feature is not included. Some features are
included for every product because they are mandatory, and some pairs are not
covered since they are invalid according to the feature model.

Table 1. Pair-wise coverage of the feature model in Figure 1 the test suites numbered

Feature\ Product 1 2
EclipseSPL X X
WindowingSystem X X
Win32 - -
GTK - X
Motif - - -
Carbon - - - X
Cocoa X - - - - - - - -
(O8] XXXXXXXXX
OS Win32 - -X - -X--X
Linux - X - -X-XX -
MacOSX X--X- - - - -
Hardware XXXXXXXXX
x86 X--XX--X-
x86 64 - XX - -XX-X
Team - - - - - XXXX
CVS - - - - - - - - -
CVS Over SSH - - - e - - - - -
CVS Over SSH2 - - - - - - - - -
SVN - - - - - XXXX
Subversive - - - e - - - - -
Subclipse - - - - - XXXX
Subclipse 1 4 x - - - - - - - XX
Subclipse 1 6 x - - - - - XX - -
GIT -
EclipseFileSystem X
Local X
Zip -

X R o

PR
el
-
XKD
=S
CX X%

19
X
X

XXX o
[
[
XX Ko
EXr XX S
LR R G
PR
XX
PR

3
X
X
X

SR
PR XKD

b

[

Pl
Ko
o

L
5
LS
o
LN
N

>

>

bl
[

b

[

[

R X
Rl
5
ST
MoK
Rl
KooK
Rl
KX X
Rl
Rl
5

b
bl
b
R

VAV
SRl
XK K
PR
DK KK
PG KKK K
PR KK K
PP KK K

bl
el
ool
>R
bl

X
X
XK
Ko
Ko
XK

AN
|:><><|
T
e
e
T
|:><><|
e
LR
|:><><|
T X
TR
[
EEEX

Testing every pair is called 2-wise testing, or pair-wise testing. This is a special
case of t-wise testing where t = 2. 1-wise coverage means that every feature is
at least included and excluded in one product, 3-wise coverage means that every
combination of three features are present, etc. For our running example, 5, 64
and 150 products is sufficient to achieve 1-wise, 3-wise and 4-wise coverage,
respectively.

An important motivation for combinatorial interaction testing is a paper by
Kuhn et al. 2004 [11]. They indicated empirically that most bugs are found for
6-wise coverage, and that for 1-wise one is likely to find on average around 50%,
for 2-wise on average around 70%, and for 3-wise around 95%, etc.

There are three main stages in the application of combinatorial interaction
testing to a product line. First, the feature model of the system must be made.
Second, the subset of products must be generated from the feature model for
some coverage strength. Such a subset is called a t-wise covering array for a
coverage strength t. Last, a single system testing technique must be selected
and applied to each product in this covering array. The first and last of these
stages are well understood. The second stage, however, is widely regarded as
intractable, thereby rendering the approach useless for industrial size software
product lines.

106

642 M.F. Johansen,). Haugen, and F. Fleurey

3 The Case for Tractable t-wise Covering Array
Generation

3.1 Complexity Analysis of Covering Array Generation

The generation of t-wise covering arrays is equivalent to the minimum set cover
problem, an NP-complete problem. Given a set of elements, for example U =
{1,2,3,4,5}; we have a set of sets of elements from U, for example S = {{1,2, 3},
{2,4},{3,4},{4,5}}. The set cover problem is to identify the minimum number
of sets, C, from S such that the union contains all elements from U, which is for
the example C' = {{1,2,3},{4,5}}.

1-wise covering array generation is easily converted to a set cover problem
by listing all valid configurations of the product line, and having that as S.
Each element of U is a pair with the feature name and a Boolean specifying the
inclusion or exclusion of the feature. Solving this set cover problem then yields
a 1-wise covering array. This can be done similarly for ¢ > 1 by having tuples of
assignments in U.

The set cover problem has a known approximation algorithm. (An approxi-
mation in this context is not the degree of t-wise coverage, which is 100% for
all the discussion in this paper; but how many more products are selected than
absolutely necessary.) The approximation algorithm was presented in Chvétal
1979 [3]. It is a greedy algorithm with a defined upper bound for the degree
of approximation which grows with the size of the problem, but the degree of
approximation remains acceptable. The algorithm is quite simple; it selects the
set in S which covers the most uncovered elements until all elements are cov-
ered. For t-wise testing, this means selecting the product which covers the most
uncovered tuples.

The set cover problem assumes that the sets with which to cover are already
available so that one can look at all of them. For feature models, the solution
space grows exponentially with respect to the number of features. Thus, it is
infeasible to iterate through all the valid configurations.

And it gets worse, even generating a single configuration of a feature model
is equivalent to the Boolean satisfiability problem (SAT), an NP-hard problem.
SAT is the problem of assigning values to the variables of a propositional formula
such that the formula evaluates to true. Batory 2005 [1] showed that ordinary
feature models are equivalent to propositional formulas with respect to expres-
siveness, and that a feature model can easily be converted to a propositional
formula.

Approximating the SAT problem is not possible: either we have the solution
or we do not. This is also why the literature on combinatorial interaction testing
classifies the generation of covering arrays as intractable.

3.2 Quick Satisfiability of Realistic Feature Models

Nie and Leung 2011 [16] is a recent survey of combinatorial testing. They state
that their survey is the first complete and systematic survey on this topic. They

107

On the Feasibility of Combinatorial Testing of Product Lines 643

found 50 papers on the generation of covering arrays. Covering array generation
is reported to be NP-hard, but no detailed analysis is given. Such an analysis
is given in both Perrouin et al. 2010 [18] and Garvin et al. 2011 [6] which both
classify covering array generation as intractable because finding a single config-
uration of a feature model is equivalent to the Boolean satisfiability problem.

And this is indeed the general case given an arbitrary, grammatically valid
feature model, but is it so in practice? It was observed by Mendonca et al.
2009 [15] that SAT-based analysis of realistic feature models with constraints is
easy, but they did not identify the theoretical reason for this nor whether it is
necessarily so and suggested finding the theoretical explanation as future work.

We propose that the theoretical explanation simply is that realistic feature
models must be easily configurable by customers in order for them to efficiently
use them. Configuring a feature model is equivalent to solving the Boolean sat-
isfiability problem for the feature model.

The primary role of feature models in software product line engineering is for
a potential customer to be able to sit down and configure a product to fit his
or her needs. Imagine the opposite case. A company has developed a product
line, but finding a single product of the product line takes a million years since
there is no tractable solution to NP-hard problems. This situation is absurd. If
it is really that difficult to find even a single product in a product line, then
the feature model is too difficult for customers to use. If the customers cannot
configure a feature model by hand assisted by a computer, is not an important
point of the product line approach lost?

The same argument also shows that finding the solution to a partially con-
figured feature model remains quick. If not, a customer might come into the
situation that he or she cannot manage to complete the product configuration.

The kind of complexity that gives rise to modern computers being unable to
solve a Boolean satisfiability problem in a timely manner would start challenging
what is understandable by an engineer maintaining the product line.

Therefore, for the class of feature models intended to be configured by humans
assisted by computers, which we think at least is a very large part of the realistic
feature models, quick satisfiability is also a property.

3.3 Configuration Space

Even if the satisfiability of a realistic feature model is quick, traversal of the
configuration space is still an issue. The configuration space of a feature model
grows exponentially with the number of features, so one cannot traverse this
space looking for the configuration that covers the most uncovered tuples, as
required by Chvéatal’s greedy approximation algorithm.

Even if one only manages to cover one tuple per iteration, the upper bound
for both time and the numbers of products is polynomial, since the number of

tuples is ({) (where f is the number of features and t the coverage strength; for

example, (g) gives the number of ways we can select a pair out of the configured

features where order does not matter.) It is highly likely, however, that one is able

108

644 M.F. Johansen,). Haugen, and F. Fleurey

to quickly cover many tuples. For pair-wise coverage, finding the first product
COVers (g) out of 4(}) pairs for the worst case scenario. This is at least 25% of
the possible pairs.

Covering many tuples at each iteration is still a challenge, but the upper
bound of the penalty is polynomial. Since it is not feasible to traverse the con-
figuration space to find the product which covers the most tuples, neither is it
possible to guarantee the upper bound for the approximation with Chvatal’s
greedy algorithm. As we will see in the section on empirics, this does not seem

to be a problem as one is usually able to cover many tuples per iteration.

3.4 Tractable Approximation of Covering Arrays

Since finding a covering array consists of two parts, finding valid configurations
and solving the set cover problem, and since the former was shown to be tractable
and the second is approximable by Chvatal’s algorithm, we conclude that finding
an approximation of the covering array is also tractable for realistic feature
models.

4 Performance of Chvatal’s Algorithm for Covering
Array Generation

Even if the generation of covering arrays can be shown to be tractable, some
improvement of the algorithms still have to be done in order to generate covering
arrays from some of the largest known feature models. Let us look at how a basic
implementation of Chvatal’s algorithm for generating covering arrays performs
and then discuss how to improve it.

The following algorithm assumes a feature model, F'M, has been loaded, and
a strength, t, of the wanted coverage strength has been given. From the set of
assignments, (f,7), where f is a feature of FM, and i is a Boolean specifying
whether f is included, all combinations of ¢ assignments are generated and placed
in a set, U. This set then includes all valid and invalid tuples.

An Adaption of Chvdtal’s Algorithm for Covering Array Generation.

While U is not empty:
c is a configuration of FM with no variables assigned.
For each tuple e in U:

Satisfy FM assuming the assignments in both ¢ and e.

If satisfiable: Fix the assignments of e in c. Remove e from U.
Satisfy FM assuming c, add the solution to the covering array C.
//At some point, decide to remove the invalid tuples from U.

If the number of newly covered tuples < number of features:

For each tuple e in U:

If FM is not satisfiable assuming e, remove e from U.
//C now holds the covering array of FM of strength t.

109

On the Feasibility of Combinatorial Testing of Product Lines 645

4.1 Models

Sometimes in papers discussing combinatorial interaction testing, experiments
are run on randomly generated feature models. The problem with that is that
one is assuming things about feature models that might not be realistic. Here,
performance measurements will be run on realistic feature models, so that no
assumptions are made on the nature of realistic feature models.

Models? were gathered from some available sources within software product
line engineering research where the models are open and available. All the feature
models are either of actual product lines or related to publications. The models
are listed in Table 2 together with the product line name and their source.

Table 2. Models and Sources

System name Model File Name Source

X86 Linux kernel 2.6.28.6 2.6.28.6-icsell.dimacs [23]

Part of FreeBSD kernel freebsd-icsell.dimacs [23]

8.0.0

eCos 3.0 i386pc ecos-icsell.dimacs [23]

e-Shop Eshop-fm.xml [12]

Violet, graphical model ed- Violet.m http://sourceforge.net/projects/violet/

itor

Berkeley DB Berkeley.m http://www.oracle.com/us/products/
database/berkeley-db/index.html

Arcade Game Maker Peda- arcade game pl fm.xml http://www.sei.cmu.edu/productlines/

gogical Product Line ppl/

Graph Product Line Graph-product-line-fm.xml [13]

Graph Product Line Nr. 4 Gg4.m an extended version of the Graph Product
line from [13]

Smart home smart home fm.xml [27]

Tight VNC Remote Desk- TightVNC.m http://www.tightvnc.com/

top Software

AHEAD Tool Suite (ATS) Apl.m [24]

Product Line

Fame DBMS fame dbms fm.xml http://fame-dbms.org/

Connector connector fm.xml a tutorial [26]

Simple stack data structure stack fm.xml a tutorial [26]

Simple search engine REAL-FM-12.xml [14]

Simple movie system movies app fm.xml [17]

Simple aircraft aircraft fm.xml a tutorial [26]

Simple automobile car fm.xml [28]

4.2 Tool and Transformations

The models gathered were of many different formats. Software product line en-
gineering is an active field of research, and there are many research tools for
different purposes and with various strengths and weaknesses.

In order to measure the performance of covering array generation on the gath-
ered models, integration and some modification of existing tools and libraries
were needed to make them cooperate. Figure 2 shows the overview of the tool

? The models are available at the following URL: http://heim.ifi.uio.no/martifag/
models2011/fms/

110

646 M.F. Johansen,). Haugen, and F. Fleurey

that was constructed for this purpose®. The figure is of no particular graphical
modeling notation. The diamonds symbolize files with a certain suffix, the boxes
symbolize internal data structures and the arrows symbolize transformations
between the formats.

The tool accepts feature models in three different formats: GUI DSL (model
names suffixed with >.m’), as shipped with earlier versions of Feature IDE; SXFM,
the Simple XML Feature Model format (model names suffixed with ".xml’) and
dimacs (model names suffixed with ’.dimacs’), a file format for storing proposi-
tional formulas in conjunctive normal form (CNF).

%FM(GUI DsyJavaBDD »| Solutions(Integer)
< > JavaBDD
sxfm FM(SXFM) < : '%

'toCNF Configurations(t-wise Covering Array)

A
CNF - j
Chvatal's algorithm with SAT4J

Satisfiable(boolean)

[
>
_|
N
<
Y

SAT4J

Fig. 2. Transformations in the tool

The GUI DSL files can be loaded using the Feature IDE library. This library
allows writing and reading of SXFM files. Thus, they can be loaded into the
SPLAR library* along with other SXFM files.

The SPLAR library provides an export to conjunctive normal form (CNF),
a canonical way of representing general propositional constraints. Thus all the
previously loaded models can be converted into CNF formulas, along with other
formulas stored in dimacs files.

Once a model is in the form of a CNF formula, it can be given to SAT4J, an
open source tool for solving the SAT problem. Thus, all the feature models can
be input to the covering array algorithm discussed above. (SAT4J is also used
to calculate satisfiability time for the feature models.)

The covering arrays are written to a comma separated values (CSV) file, which
can be viewed in Microsoft Excel, Open Office Calc, etc. The covering arrays are
then ready to be used to configure products for which single system testing is
applied.

(Another interesting thing to know about a feature model is the number
of possible configurations. The SPLAR library makes it possible to generate a

® The tool is available as open source at http://heim.ifi.uio.no/martifag/
models2011/spltool/
* http://splar.googlecode.com

111

On the Feasibility of Combinatorial Testing of Product Lines 647

binary decision tree (BDD) which JavaBDD can work with. It then calculates
the number of possible configurations of the feature model.)

4.3 Results

Table 3 shows the results from running® our tool on the feature models in Table 2.
The feature models are ordered after the number of features. The next column
shows the number of unique constraints in the model as the number of clauses
of the conjunctive normal form of the constraints. (Constraints implied by the
structure of the feature diagrams were not included in the count.) The number
of valid products for each feature model is available for some of the smaller
models, and as can be seen, quickly increases. The next column shows the time,
in milliseconds, for running SAT4J on the feature model to find a single valid
solution. The following columns show both the size and time for generating
covering array of strengths 1-4. Some of the results are not available because
the current implementation of the tools to not scale well to these sizes.

Boolean Satisfiability Times for Feature Models. Satisfiability in gen-
eral has a worst case of about O(2™) according to Patragcu and Williams 2010
[20]. Table 3 shows the satisfiability times for the feature models. Empirically
the satisfiability time of the feature models remains low. Thus, our conclusion
regarding the quickness of satisfiability of realistic feature models is consistent
with these few observations. Note that this is not meant as a validation, but
merely as a demonstration of what we discussed in Section 3; that is, it follows
from the fact that the feature models are meant to be configured manually.

Covering Array Generation. The following are the statistically significant
relations® between the number of features and the sizes of the covering arrays.
CA(P,t) is the covering array with strength t for the propositional formula, P,
representing a feature model with F features. The size function gives the size of
the covering array.

log(size(CA(P,2))) = 0.37 * log(F) + 1.30, adjusted R?: 0.59
log(size(CA(P,3))) = 1.09 * log(F) + 0.00, adjusted R?: 0.63

Covering array sizes of strength 1 and 4 did not allow for a statistical model with
a decent fit to be made. The fit for strengths 2 and 3 are poor. The reason is that
covering array sizes are not really dependent on the number of features but on
the structure of the feature model. For example, for 1-wise coverage, a covering
array of size 2 might be sufficient: a certain assignment of optional features and
the inverse.

® The computer on which we did the measurements had an Intel Q9300 CPU
@2.53GHz and 8 GB, 400MHz ram. All executions ran in one thread.

6 Adjusted R? is a measure, ranging from 0 to 1, of the goodness of fit of a statistical
model. A value of 0.90 means that it is very unlikely a random sample would fit this
approximation with the same significance, and a value of 0.20 means that it is very
likely.

112

M.F. Johansen,). Haugen, and F. Fleurey

648

P11
1656
G909
LOS'ST
98096
30088
980°]¥
686°TCT
L02°62¥

€l
24
(e
99
96
0€
81
67
16

9CLFOV'T ¥TT
1€L°666°T €L
C6E'GT6TT 9GT

r/U
r/U
r/U
r/U
r/U
r/U
'/U
(su)
ot}
Aem-y

r/U
r/U
r/U
r/U
r/U
r/U
'/U
ozI1s
Aem-j

a7 4!
TET'T €%
€96 il
192°T €e
1.7°C 18%
067 9%
LTy 8T
8ET'G ié
G9O8'8 Ve
PPI'ST OF
0TO'€E 8%
GGE'88 €9
7P0'T89 €9
I7L'7L6'T 96
GYE'G98°¢ 121
'/u r/U
r/U r/U
r/u r/U
e/u r/U
R
souIn Aem-¢
Aem-¢

002 L
98¢ 0T
r4té 9
ove €T
60¥ 4]
218 GT
GV GT
GT1G 6
€89 0T
L16 e1
9v0‘T TT
€06'T ¢
6128 LI
GOT'TT €3
8LT1C 8T
€8GV9¢ TC
r/u r/U
r/U r/U
'/u '/U
(swr)

9ZIS

o %@B..N

Aem-g

€9
8.
8.
76
60T
154}
71
60T
8.
60T
71
ILT
67C
0GT
08¢
026
8LT9T

NN F O NF NH M O1I0MN FHF AN MM

i
9

Ve LST L

r/U
(st)
o

Aem-T

e

/u
oZIS
Aem-T

O — — N — O = = N M M D~ D~ M D~ D~

(o]
i

31

Gzl
(sur)

ouwIl) SUOIINJOS SjuleIisuo) Salnjesq

LVS

e1 ¢

cIg I

i I

921 ¢

457 I

0¢ cT

8T I

0z¢ I
LTV €
TST'L6T T
9LG'8T0°T T

096 €z
60+H0¢°¢ G¢
60-+HE0T LT
9Z+HSS T 06
'/u e
e/u 89.°C
e/u TGeeLT
e/u €61 LST

6

e1
e1
il
LT
0
0
12
Gz
0¢
Ge
8¢
19
8.
10T
18T
VW'l
96¢°T
888°9

[ux Iy Ied
[WX Wy JJerdire

[wx uy dde seraour
[WXCT-INA-TVHY

[WX wy yorls

[wx wy-aul[-1onpoid-yderr)
(WX W I0)09UU0D

[WX W} SWqp oauej

urdy

WwHNANSLL

[WX W} 9WOY }IRUIS
w8

[ux wy [d sures apeote
urAo[eyIog

wr 9]0 A

[ux-wy-doysy
SoRWIP" | TOSOI-S009
SoRWIIP" | TOSOI-PS99I]
SORWIP TTOSI1-9°8C'9°C

sAoy \ [OPOJN oInjes]

SOWIT) UOI}RIOUSS pUR SOZIS ARIIR SULIDAOD ‘Sowll} AJ[IqeysIjes ‘SPPOJN oInjesq ¢ o[qel,

113

On the Feasibility of Combinatorial Testing of Product Lines 649

The following are the estimated relations between the number of features and
the time taken in milliseconds of generating the covering arrays.

log(time(C A(P,1)))
g(time(C A(P,2)))
g(time(CA(P, 3)))
log(time(C A(P,4)))

1.46 * log(F) + 0.00, adjusted R?: 0.84
2.13 % log(F) + 0.00, adjusted R2: 0.96
4.03 * log(F') — 3.51, adjusted R?: 0.98
6.02 x log(F) — 6.41, adjusted R?: 0.97.

lo
lo

5 Discussion

5.1 Memory Requirements

The way our tool deals with the constraints in a feature model is to calculate and
store the valid, uncovered tuples in memory. The tuples need to be traversed in
order to find the configurations which cover the most uncovered tuples at each
iteration. Doing it this way, the number of constraints does not affect the memory
requirement significantly, but memory might prove to be a bottle neck.

This effectively sets the memory requirement to O(F*), where F is the number
of features in a feature model and t is the strength of the coverage. For a system
with M bytes of memory and assuming each t-tuple requires ¢ * x bytes, the
upper bound for t-wise coverage is F* = M/(t x x).

For pair-wise coverage on a system with 8GB of memory, and assuming
that a structure holding the pairs take 20 bytes, the upper bound is n =
\/8, 000, 000,000/20, n = 20,000 features. This is the upper bound of a high-end
laptop. More powerful computers are available which can be used for generating
covering arrays which increases the upper bound such that even 3-wise coverage
of the second largest feature model in our sample is within.

5.2 Accepted Covering Array Size

There is a correspondence between the number of features in a feature model
and the size of the team working with it. Thus a team of developers and testers
should be able to deal with a covering array of a size around the same size as
the number of features. If we look at the data and statistical models for covering
array size, we can see that the size of 1-3-wise covering arrays is below or close
to the number of features since the coefficient of log(F'), and thus the exponent
of F, is less than or close to 1.

5.3 Suggested Improvements and Future Work

Given the evaluations up to this point, there are a number of source of improve-
ment for generating covering arrays for software product lines.

Exploiting the Boolean Satisfiability Speed. Nie and Leung 2011 [16] clas-
sified handling constraints for covering array generation is an open problem for

114

650 M.F. Johansen,). Haugen, and F. Fleurey

covering array generation in general. Using SAT-solvers is good way to handle
constraints for covering array generation based on feature models. Also, since
satisfiability of feature models has been assumed to be intractable up to this
point, it might be an unexploited source for improvement of covering array gen-
eration speed.

Parallelization. The algorithm that was used to make the measurements in this
paper ran in one thread. An algorithm which supports running on several threads
will improve the execution time for generating the covering arrays. For example,
the step for finding all invalid tuples in the adaption of Chvatal’s algorithm
above can be run in parallel by splitting the set of tuples in, for example, four
and checking each fourth in a separate thread.

Heuristics. Another unexploited source of improvement for covering array gen-
eration is knowledge from the domain model. UML-models and annotations on
feature models should be taken into account when generating a covering array to
make it smaller and its generation time lower. CVL [7] is a variability language
with tool support which, in addition to feature diagrams, models the variabil-
ity of a system on the system model as well. Knowing what a feature refers to
in a system model is an unexploited source of improvement for covering array
generation.

In a recent publication [8], we show how to exploit one commonly occurring
structure in product lines when doing combinatorial interaction testing. Often
there are several implementations of the same basic functionality which is used by
the other components in the product line through an abstraction layer. These
implementations occur as mutual exclusive alternatives in the feature model.
Mutual exclusive alternatives are detrimental to combinatorial interaction test-
ing [2], causing a substantial increase in the number of products in the covering
arrays. We show that if the increase of products is due to the abstraction layer
implementations, then the number of test suites required can be reduced by
reusing test suites for several of the products in the array without losing the bug
detection capabilities.

6 Conclusion

In this paper we showed that although it is widely held that configuring feature
models is intractable, in practice the role of feature models in software product
line engineering implies that it is quick. Boolean satisfiability solvers thus provide
an efficient way to handle constraints in feature models and should be exploited
for doing covering array generation without the fear that the running time will
be intractable.

Acknowledgments. We want to thank the anonymous reviewers for their help-
ful feedback.

The work presented here has been developed within the VERDE project ITEA
2 - ip8020. VERDE is a project within the ITEA 2 - Eureka framework.

115

On the Feasibility of Combinatorial Testing of Product Lines 651

References

10.

11.

12.

13.

14.

15.

16.

17.

116

Batory, D.: Feature models, grammars, and propositional formulas. In: Obbink,
H., Pohl, K. (eds.) SPLC 2005. LNCS, vol. 3714, pp. 7-20. Springer, Heidelberg
(2005)

Cabral, 1., Cohen, M.B., Rothermel, G.: Improving the testing and testability of
software product lines. In: Bosch, J., Lee, J. (eds.) SPLC 2010. LNCS, vol. 6287,
pp. 241-255. Springer, Heidelberg (2010)

. Chvatal, V.: A greedy heuristic for the Set-Covering problem. Mathematics of

Operations Research 4(3), 233-235 (1979)

Cohen, M.B., Dwyer, M.B., Shi, J.: Constructing interaction test suites for highly-
configurable systems in the presence of constraints: A greedy approach. IEEE
Transactions on Software Engineering 34, 633-650 (2008)

Engstrom, E., Runeson, P.: Software product line testing - a systematic mapping
study. Information and Software Technology 53(1), 2-13 (2011)

Garvin, B.J., Cohen, M.B., Dwyer, M.B.: Evaluating improvements to a meta-
heuristic search for constrained interaction testing. Empirical Softw. Engg. 16,
61-102 (2011)

. Haugen, @., Mgller-Pedersen, B., Oldevik, J., Olsen, G.K., Svendsen, A.: Adding

standardized variability to domain specific languages. In: SPLC 2008: Proceedings
of the 2008 12th International Software Product Line Conference, pp. 139-148.
IEEE Computer Society, Washington, DC (2008)

Johansen, M.F., Haugen, ., Fleurey, F.: Bow tie testing - a testing pattern for
product lines. In: Proceedings of the 16th Annual European Conference on Pattern
Languages of Programming (EuroPLoP 2011), Irsee, Germany, July 13-17 (2011)
Johansen, M.F., Haugen, ., Fleurey, F.: A survey of empirics of strategies for
software product line testing. In: 2011 IEEE Fourth International Conference on
Software Testing, Verification and Validation Workshops, ICSTW, pp. 266269 (
March 2011)

Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S.: Feature-oriented
domain analysis (foda) feasibility study. Tech. rep., Carnegie-Mellon University
Software Engineering Institute (November 1990)

Kuhn, D.R., Wallace, D.R., Gallo, A.M.: Software fault interactions and impli-
cations for software testing. IEEE Transactions on Software Engineering 30(6),
418-421 (2004)

Lau, S.Q.: Domain analysis of e-commerce systems using feature-based model tem-
plates. Master’s thesis, ECE Department, University of Waterloo, Canada (2006)
Lopez-Herrejon, R.E., Batory, D.: A standard problem for evaluating product-line
methodologies. In: Dannenberg, R.B. (ed.) GCSE 2001. LNCS, vol. 2186, pp. 10—
24. Springer, Heidelberg (2001)

Mendonca, M.: Efficient Reasoning Techniques for Large Scale Feature Models.
Ph.D. thesis, School of Computer Science, University of Waterloo (January 2009)
Mendonca, M., Wasowski, A., Czarnecki, K.: Sat-based analysis of feature models is
easy. In: Proceedings of the 13th International Software Product Line Conference,
pp. 231-240. Carnegie Mellon University (2009)

Nie, C., Leung, H.: A survey of combinatorial testing. ACM Comput. Surv. 43,
11:1-11:29 (2011)

Parra, C., Blanc, X., Duchien, L.: Context awareness for dynamic service-oriented
product lines. In: Proceedings of the 13th International Software Product Line Con-
ference, SPLC 2009, pp. 131-140. Carnegie Mellon University, Pittsburgh (2009)

652

18.

19.

20.

21.

22.
23.

24.

25.

26.

27.

28.

M.F. Johansen,). Haugen, and F. Fleurey

Perrouin, G., Sen, S., Klein, J., Baudry, B., le Traon, Y.: Automated and scalable
t-wise test case generation strategies for software product lines. In: Proceedings
of the 2010 Third International Conference on Software Testing, Verification and
Validation, ICST 2010, pp. 459-468. IEEE Computer Society, Washington, DC
(2010)

Pohl, K., Bockle, G., van der Linden, F.J.: Software Product Line Engineering:
Foundations, Principles and Techniques. Springer-Verlag New York, Inc., Secaucus
(2005)

Patrascu, M., Williams, R.: On the possibility of faster sat algorithms. In: Pro-
ceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete Algo-
rithms, SODA 2010, pp. 1065-1075. Society for Industrial and Applied Mathemat-
ics, Philadelphia (2010)

Reuys, A., Reis, S., Kamsties, E., Pohl, K.: The scented method for testing software
product lines. In: K&kola, T., Duenas, J.C. (eds.) Software Product Lines, pp. 479
520. Springer, Heidelberg (2006)

Rivieres, J., Beaton, W.: Eclipse Platform Technical Overview (2006)

She, S., Lotufo, R., Berger, T., Wasowski, A., Czarnecki, K.: Reverse engineering
feature models. In: Taylor, R.N., Gall, H., Medvidovic, N. (eds.) ICSE, pp. 461-470.
ACM, New York (2011)

Trujillo, S., Batory, D., Diaz, O.: Feature refactoring a multi-representation pro-
gram into a product line. In: Proceedings of the 5th International Conference on
Generative Programming and Component Engineering, GPCE 2006, pp. 191-200.
ACM, New York (2006)

Uzuncaova, E., Khurshid, S., Batory, D.: Incremental test generation for software
product lines. IEEE Transactions on Software Engineering 36(3), 309-322 (2010)

Voelter, M.: Using domain specific languages for product line engineering. In: Pro-
ceedings of the 13th International Software Product Line Conference, SPLC 2009,
pp. 329-329. Carnegie Mellon University, Pittsburgh (2009)

Weston, N., Chitchyan, R., Rashid, A.: A framework for constructing semantically
composable feature models from natural language requirements. In: Proceedings of
the 13th International Software Product Line Conference, SPLC 2009, pp. 211-220.
Carnegie Mellon University, Pittsburgh (2009)

White, J., Dougherty, B., Schmidt, D.C., Benavides, D.: Automated reasoning
for multi-step feature model configuration problems. In: Proceedings of the 13th
International Software Product Line Conference, SPLC 2009, pp. 11-20. Carnegie
Mellon University, Pittsburgh (2009)

117

Chapter 8

Paper 2: An Algorithm for Generating
t-wise Covering Arrays from Large
Feature Models

Errata

1. The sum of 3-wise covering array sizes for IPOG should have been 345, not 601. Conse-
quently, the text should say that IPOG produces comparable covering array sizes to three
of the other top algorithms for 3-wise. Thanks to Linbin Yu for identifying this mistake.

2. The version of NIST ACTS used was not mentioned. The version used was version 2
beta, revision 1.5 acquired 2012-01-04.

119

An Algorithm for Generating t-wise Covering Arrays from
Large Feature Models

Martin Fagereng Johansen'?, @ystein Haugen' and Franck Fleurey*
!SINTEF ICT, Pb. 124 Blindern, 0314 Oslo, Norway
{Martin.Fagereng.Johansen, Oystein.Haugen, Franck.Fleurey}@sintef.no
2Institute for Informatics, University of Oslo, Pb. 1080 Blindern, 0316 Oslo, Norway

ABSTRACT

A scalable approach for software product line testing is re-
quired due to the size and complexity of industrial prod-
uct lines. In this paper, we present a specialized algorithm
(called ICPL) for generating covering arrays from feature
models. ICPL makes it possible to apply combinatorial in-
teraction testing to software product lines of the size and
complexity found in industry. For example, ICPL allows
pair-wise testing to be readily applied to projects of about
7,000 features and 200,000 constraints, the Linux Kernel,
one of the largest product lines where the feature model
is available. ICPL is compared to three of the leading al-
gorithms for t-wise covering array generation. Based on a
corpus of 19 feature models, data was collected for each algo-
rithm and feature model when the algorithm could finish 100
runs within three days. These data are used for comparing
the four algorithms. In addition to supporting large feature
models, ICPL is quick, produces small covering arrays and,
even though it is non-deterministic, produces a covering ar-
ray of a similar size within approximately the same time
each time it is run with the same feature model.

Categories and Subject Descriptors

D.2.5 [Software Engineering]: Testing and Debugging—
testing tools

General Terms
Algorithms, Verification

Keywords

Product Lines, Testing, Feature Models, Combinatorial In-
teraction Testing

INTRODUCTION

A software product line (SPL) is a collection of systems
with a considerable amount of code in common. The com-
monality and differences between the systems are commonly

1.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SPLC ’12, September 02 - 07 2012, Salvador, Brazil

Copyright 2012 ACM 978-1-4503-1094-9/12/09 ...$15.00.

46

modeled as a feature model. Testing product lines is a chal-
lenge since testing all possible products is intractable. Yet,
one has to ensure that any valid product will function cor-
rectly. There is no consensus on how to efficiently test soft-
ware product lines [5], but there are a number of suggested
approaches. Each of the approaches still has problems of
scalability; this is covered in Section 2.

Combinatorial interaction testing [3] is a promising ap-
proach for performing interaction testing between the fea-
tures of a product line. Most of the difficulties of combina-
torial interaction testing have been sorted out.

In [11], we resolved a previously considered bottleneck of
combinatorial interaction testing and concluded that gener-
ating covering arrays from realistic feature models is tractable.
We evaluated a basic algorithm for generating covering ar-
rays. The performance of this basic algorithm was measured
on a corpus of 19 realistic feature models. It was concluded
that it is possible to make an algorithm that could generate
covering arrays from the larger feature models, and that the
basic algorithm has insufficient performance.

In this paper we present an algorithm, called ICPL! that
is able to generate covering arrays from large feature mod-
els. Based on the basic algorithm presented in [11], the new
algorithm contains optimizations that significantly increases
the performance of it, described in detail in Section 4.

We then present the results from an experiment?, Sec-
tion 5, using the same corpus of 19 feature models from [11]
on ICPL and on three of the leading algorithms for t-wise
covering array generation. In this experiment, each of the
five algorithms was given an opportunity to run 100 times on
each of the 19 feature model for each strength of 1-3. The
analysis of these data is presented in Section 5 and gives an
extensive insight into how ICPL performs on its own and in
comparison to the other algorithms. The experiment shows
that ICPL successfully generates a pair-wise covering array
for a feature models of about 7,000 features and 200,000 con-
straints, the Linux Kernel, one of the largest product lines
where the feature model is available. In addition to sup-
porting large feature models, ICPL produces small covering
arrays overall and has the highest level of scalability. For
ICPL, the standard deviation is low for both the time taken
to generate the covering arrays and their sizes.

'ICPL is a recursive accronym that stands for "ICPL Cov-
ering array generation algorithm for Product Lines”.

2An open source implementation of ICPL is available at
http://heim.ifi.uio.no/martifag/splc2012/ along with
all the measurements, the feature models in the corpus and
scripts used in the experiment.

121

EclipselDE
Team

EclipseFileSystem
Cvs Local

AN

‘ CVS_Over_SSH ‘ Subversive l ‘ Subclipse ‘

Zip

l CVS_Over_SSH2 l l Subclipse_1_4_x l l Subclipse_1_6_x l

Figure 1: Feature Model for a Subset of the Eclipse
IDE Product Line

2. BACKGROUND AND RELATED WORK

2.1 Software Product Lines

A software product line [19] is a collection of systems with
a considerable amount of code in common. The primary
motivation for structuring a system as a product line is to
allow customers to have a system tailored for their purpose
and needs, while still avoiding redundancy of code. It is
common for customers to have conflicting requirements. In
that case, it is not even possible to ship one system for all
customers.

For example, the Eclipse IDEs [21] can be seen as a soft-
ware product line. Today, the Eclipse project lists 11 prod-
ucts on their download page®.

One way to model the commonalities and differences in a
product line is using a feature model* [13]. A feature model
sets up the commonalities and differences of a product line in
a tree such that configuring the product line proceeds from
the root of the tree. Figure 1 shows a part of the feature
model for the Eclipse IDEs. The figure uses the common
notation for feature models; for a detailed explanation of
feature models, see Czarnecki and Eisenecker 2000 [4].

2.2 Software Product Line Testing

Testing a software product line poses a number of new
challenges compared to testing single systems. It has to
be ensured that each possible configuration of the product
line functions correctly. One way to verify a product line
is through testing, but testing is done on a running system:.
The software product line is simply a collection of many
products. One cannot test each possible product, since the
number of products in general grows exponentially with the
number of features in the product line. For the feature model
in Figure 1, the number of possible configurations is 64, but
this is a relatively simple product line.

There is no single recommended approach available to-
day for testing product lines efficiently [5], but there are
many suggestions. Some of the more promising suggestions
are combinatorial interaction testing [3], discussed below;
reusable component testing, which we have seen in indus-
try [12], but which does not test for interaction faults in the
product line; a technique called ScenTED, where the idea
is to express the commonalities and differences on the UML

3http://eclipse.org/downloads/, retrieved 2012-01-16
4Throughout this paper, the term feature models is used to
mean basic feature models which have equivalent expressive-
ness as propositional logic formulas.

122

47

Table 1: 2-wise Covering array of the Feature Model
in Figure 1.

Feature\Product 1|2(3]4|5(6|7|8[9|10[11|12
Eclipse]lDE XIXIXIX XXX XX X [X | X
Team XIX] - XXXIX[X[X][X| - |X
CVSs XX - XX - X - (X - |- | -
CVS_Over_SSH X - |- XIX]- [X[-[X] - | - |-
CVS_Over_SSH2 - - - XX - (X - (XL -] -] -
SVN XX - (XXX - (XXX

Subversive X|-[-X|-|-[-X[-|-]-]-
Subclipse - IX]- - XX - |- (X)X -] -
Subclipse_1_4 x -IXL-1- X -] -1 X -] -
Subclipse_1_6_x -1 -] -] -
GIT X -[- - XX - [(X]-]- |- X
EclipseFileSystem [X[X|X[XXXIXIX[X|X|X|X
Local XX XXX XX XX X | X | X
Zip - (XXX - - |- (XX -] -] -

model of the product line and then derive concrete test cases
by analyzing it [20]; and incremental testing, where the idea
is to automatically adapt a test case from one product to the
next using the specification of similarities and differences be-
tween the products [23]. Kim et al. 2011 [14] presented a
technique where they can identify irrelevant features for a
test case using static analysis. They use that information to
reduce the combinatorial number of product to test.

2.3 Combinatorial Interaction Testing for
Product Lines

Combinatorial interaction testing [3] is one of the most
promising approaches. The benefits of this approach are
that it deals directly with the feature model to derive a
small set of products which can then be tested using single
system testing techniques, of which there are many good
ones. The idea is to select a small subset of products where
the interaction faults are most likely to occur.

For example, we can select the subset of all possible prod-
ucts where each pair of features is present. This includes the
cases where both features are present, when one is present,
and when none of the two are present. Table 1 shows the
12 products that must be tested to ensure that every pair-
wise interaction between the features in the running exam-
ple functions correctly. Each row represents one feature and
every column one product. ’X’ means that the feature is
included for the product; -> means that the feature is ex-
cluded. Some features are included for every product be-
cause they are core features, and some pairs are not, covered
since they are invalid according to the feature model. Since
every pair is present, this set of products is called a pair-
wise covering array, or 2-wise covering array. (The latter
terminology will be used in this paper.) Testing a product
line based on a 2-wise covering array is called 2-wise testing
of the product line.

2-wise covering arrays are a special case of t-wise covering
arrays where t = 2. l-wise coverage means that every fea-
ture is at least included and excluded in at least one product.
3-wise coverage means that every combination of three fea-
tures is present, etc. For our running example, 4, 12 and 27
products are sufficient to achieve 1-wise, 2-wise and 3-wise
coverage, respectively.

The main motivation behind combinatorial interaction test-
ing are the empirics collected by Kuhn et al. 2004 [15]. The
empirics they collected indicate that most bugs are caused
by simple interactions between features.

There are three main stages in the application of com-

)

binatorial interaction testing to a product line. First, the
feature model of the system must be made (for example as
in Figure 1). Second, the subset of products must be gen-
erated from the feature model for some coverage strength
(for example as in Table 1). Last, after having built each
product, a single system testing technique must be selected
and applied to each product.

The first and last of these stages are well understood. For
the second stage, however, no scalable algorithm is known®,
thereby rendering the approach less usable for larger indus-
trial size software product lines. An algorithm for generating
covering arrays from large feature models, Section 4, and an
evaluation of it, Section 5, are the contributions of this pa-
per.

3. THE BASIC ALGORITHM

We have previously presented Algorithm 1 in [11]. Using a
greedy algorithm for generating a covering array in this way
has certainly been known since the publication of Chvétal’s
algorithm [2], which presents a greedy heuristic for the set
cover problem, of which covering array generation is a one
type of. It has been previously discussed in the context of
single system testing in Grieskamp et al. 2009 [8] and in
Calvagna and Gargantini 2009 [1] among others.

3.1 Groundwork

To explain the algorithms in the following sections, some
groundwork is needed.

An assignment a is a pair (f, included), where f is a fea-
ture of a feature model FFM, and included is a Boolean
specifying whether f is included or not. A configuration,
C, is a set of assignments where all features in the feature
model, F'M, have been given an assignment. A t-set is a
set of ¢ assignments, {a1,as,...}. The set of all t-sets of a
feature model, F'M, is denoted Ty, e.g. Ti,715,75,.... The
set of invalid t-sets is denoted Iy, e.g. I1,13,Is,.... The
set of valid t-sets, the universe of the set cover problem, is
thus Uy = T3 \ It. A covering array of strength ¢ is a set
of configurations, C}, in which all valid t-sets, all t-sets in
U, are a subset of (or the same set as) at least one of the
configurations.

The feature model is stored in an object and has some
methods:

e size(). In this context, the size of the feature model is
the number of features. |F'M| is an alternative nota-
tion to get the size of a feature model.

e genT(t) returns the set of all combinations of ¢ feature
assignments (both valid and invalid), 7.

e satisfy(c) returns a valid configuration of the feature
model given the assignments in c¢. Although not a
requirement, this function gives a configuration that
tends to have no more features included than neces-
sary. This is the default behavior of SAT4J which is
used in our concrete implementation of F'M’s satisfy
method.

e is_satisfiable(c) returns true if the feature model is
satisfiable given the assignments in c.

5Scalable algorithms are known for special cases, such as
when there are no constraints.

48

3.2 Algorithm

Algorithm 1 requires that a feature model, F'M, has been
loaded. It also assumes a strength, ¢, of the wanted coverage
strength has been given.

As long as there are more t-sets to cover, the algorithm
fills up a new configuration, C, with many uncovered t-sets.
The covered t-sets are first added to the set C'O, line 9,
before being removed from T, line 12.

At a certain point, line 17, all the invalid t-sets will be re-
moved from 7', leaving only valid t-sets in T". This point has
been empirically determined to be when the order of magni-
tude of the covered t-sets is the same as the order of magni-
tude of the size of the feature model, when (|logio|CO|] <
[logio|FM]|]). For example, with a feature model with 500
features, the invalid t-sets are removed when the number of
t-sets covered is 999 or less. This condition could have been
removed, meaning that all invalid t-sets would be removed
in the first round. This is inefficient since the satisfiability
solver would have to check a lot of valid t-sets, line 19. We
found that it is better to wait until a lot of valid t-sets have
been removed from 7. It is also inefficient to wait until the
algorithm has covered all valid t-sets, at which point CO
would be empty. The reason is that the satisfiability solver
will be burdened with a lot of invalid t-sets at line 7. The
condition at line 17 was empirically found to be an efficient
middle point between these two extremes.

Algorithm 1 Pseudo Code of Chvétal’s Algorithm Adapted
for Covering Array Generation

1: T« FM.genT'(t)

2: (invalidRemoved, Cy) < (false, ()

3: while 7' # () do

4: C+0
5. CO <+« 0
6: for each t-set e in T' do
7 if F'M.is_satisfiable(C' Ue) then
8: C+CuUe
9: CO + COU{e}
10: end if
11: end for
122 T+ T\CO
13: if CO # 0 then
14: C <+ FM.satisfy(C)
15: Cf, < Ct @] {C}
16: end if
17 if (minvalidRemoved) A([log10|CO|] < |logio|FM|])
then
18: for each t-set e in T" do
19: if =FM.is_satisfiable(e) then
20: T+ T\A{e}
21: end if
22: end for
23: invalidRemoved < true
24: end if

25: end while

Algorithm 1 is guaranteed to finish with the complete t-
wise covering array of F'M in C;. First, all combinations of
t assignments are generated at line 1. Then, a t-set is either
covered, line 8-9, and therefore removed from 7T, line 12, or
found to be invalid and therefore removed from T at line
20. CO tends towards 0 as more and more valid t-sets are
covered. This guarantees that the condition on line 17 will

123

pass eventually. Since all t-sets are either valid or invalid,
the condition 3 is guaranteed to evaluate to false eventually,
at which point all t-sets have either been covered or classified
as invalid.

4. THE NEW ALGORITHM: ICPL

ICPL works essentially the same way and for the same
reasons as Algorithm 1, but ICPL does several things to
avoid redundant work, learn from intermediate results and
allows doing some things in parallel.

Algorithm 2 shows the highest level of the ICPL algo-
rithm. Just as Algorithm 1, ICPL takes a feature model,
FM, and a strength ¢ and generates the covering array of
strength ¢, C;. In addition, the complete set of invalid t-
sets, I, is returned. Some parts of ICPL have been put into
sub-algorithms that will each be explained in turn in this
section.

Lines 10-20 is the same greedy main-loop at in Algo-
rithm 1, except that generating a single configuration, line
11, and finding all covered t-sets, line 13, have been sepa-
rated from each other and put into sub-algorithms. Finding
all invalid t-sets, lines 16-17, has also been separated out
into a sub-algorithm. The point at which the invalid t-sets
are removed, line 15, is exactly as in Algorithm 1.

Lines 1-9 are different than in Algorithm 1. It has been
previously treated and utilized in Fouche et al. 2009 [6],
that a covering array of strength ¢t — 1 is a subset of (or
the same set as) a covering array of strength ¢, that is that
CA(FM,t—1) C CA(FM,t). Thus, before starting to cover
for strength t, the algorithm covers for all values of n in
1 < n < t. Thus, before generating C, the algorithm knows
Cy_1 and I;_1. This is done in lines 6-8.

Line 2—4 is the bottom of the recursion. Here, the com-
plete set of invalid 1-sets, I, is identified, line 2, which gives
us the complete U; (stored in T}), line 3. Since the whole I
is found, invalid Removed is set to true, line 4.

Algorithm 2 ICPL(FM,t) : (Cy, It)

1: if t =1 then

2: (Cy, It) < genCompletel, (FM)

3: Ty« FM.genT(1)\ I

4 dnvalidRemoved < true

5: else

6: (Cy,Ii—1) & ICPL(FM,t—1)

7 (T, It) < generateT Sets(FM.getT(t), I;—1,Ch)
8: inwvalidRemoved < false

9: end if
10: while T} # 0 do
11: C + genConfiguration(FM,Ty)
12: Ct < Ct @] {C}
13: CO « getCovered(FM,C,T;)
14: Tt <— Tz \ cCO
15: if (minvalidRemoved) A(|log10|CO|] < [logio|FM]|])

then

16: (Ty, Templ) < genInvalid(FM,T})
17: I < I UTempl
18: invalid Removed < true
19: end if

20: end while
21: return (Cy, Iy)

124

49

4.1 Finding Core and Dead Features Quickly

A step in the algorithm of generating a covering array is
finding all core and dead features. Core features are features
that must always be included, and dead features are features
that can never be included. Therefore, if a feature is core,
any assignment excluding it is invalid. Also, if a feature is
dead, any assignment including it is invalid. (There should
never to be dead features in a feature model, but it is possible
to have them.)

The basic way to do this is simply trying to set each fea-
ture to included and excluded. Then, if the feature model
is unsatisfiable, it implies that the feature is either dead or
core, respectively. This is done in Algorithm 3. This algo-
rithm takes the feature model, FFM, and a set of 1-sets, T1.
It then checks each assignment to see if it is valid or not,
line 3. Those that are invalid are added to the set of invalid
1-sets, I;. This, hence, is guaranteed to give us all invalid
1-sets of T;.

Algorithm 3 getInvalidAssignments(FM,Ty) : I
1: Il < (Z)

2: for each t-set e in 77 do

3. if ~FM.is_satisfiable(e) then
4: 11 < Il U {8}
5
6
7

end if
: end for
: return [

There is a way to speed this up. Algorithm 4 shows how
this is done.

Algorithm 4 genCompletel, (FM) : (C,I)
1: (I, NotCore, NotDead) + (0,0,0)
2: T« FM.genT(1)

3: ¢1 + FM.satisfy(0)
4: for each assignment a in ¢; do
5. if —a.included then
6.
7
8

NotCore < NotCoreU {a}
end if
: end for
9: IC +— {¥ € T : eis anot included feature} \ NotCore
o I + getInvalidAssignments(FM, IC)
o « FM.satisfyManylInclusions(()
: for each assignment a in ¢z do
if a.included then
NotDead < NotDead U {a}
end if
: end for
: IC <+~ {¥ €T : eis an included feature} \ NotDead
. I+ IT'UgetInvalidAssignments(FM,IC)
: return ({c1,c2}, 1)

Algorithm 4 gives the same result as Algorithm 3. The
difference is that Algorithm 4 learns from two concrete con-
figurations that were constructed a special way in order to
do the same thing, only faster. (In addition, Algorithm 4 re-
turns these two configurations.) The first part of the learn-
ing experience is line 3-9. Given, for example, a feature
model with 7,000 features, the call at line 3 will give a con-
figuration with, for example, 500 features included. This
informs us that the remaining 6,500 features are not core
features. If they were, they must have been included in a

valid configuration. Thus, we do not have to check that
6,500 assignments with these features not included are in-
valid. Thus they are removed from the set of candidates for
invalid assignments, IC.

The same things is repeated again, line 10-18. But now,
a configuration with, for example, 5,000 features included is
returned instead, at line 11. This informs us that these 5,000
features are not dead. If they were dead, they could not be
included in a valid configuration. Thus, 5,000 assignments
with included features can be removed from the set of candi-
date invalid assignments, line 17. (satisfyManyInclusions
inverts the feature model before calling satisfy and then
inverts the assignments in the configuration [10].)

4.2 Early Identification of Invalid t-sets

In Algorithm 1, line 1, the complete T} was given. How-
ever, it is possible to be more clever in this step. How this
is done is shown in Algorithm 5. In ICPL we use the knowl-
edge from the covering array and the set of invalid t-sets
from the ¢t — 1 step of the recursion, given as Cy and I;_1.

Algorithm 5 generateT Sets(T,I,—1,Cy) : (T, 1)

1: (NewT, It) <+ (0,0)

2: Loop:

3: for each t-set e in T do

4 for each configuration C in C; do
5: if e C C then

6: continue Loop

7 end if

8 end for

9: for each t-set 7 in I;_1 do
10: if 1 C e then
11: It < It U {6}
12: continue Loop
13: end if
14: end for
15: NewT < NewT U {e}
16: end for
17: return (NewT,I;)

If we removed lines 4-14, what we would get is the set T}
returned as NewT. This would give us the same result as
Algorithm 1, line 1. But, two things are done in ICPL:

On lines 4-8, if a t-set has already been covered by a
configuration in C, we do not have to cover it again. Thus,
the t-set is skipped.

On lines 9-14, if ¢ is an invalid (t-1)-set of I,_1, so are
all t-sets e € T, for which i C e. Thus, those t-sets can be
added to the set of invalid t-sets, line 11.

4.3 Generating a Single Configuration

Algorithm 6 finds a single configuration, which assign-
ments are collected in C, that covers many uncovered t-sets.

This is essentially the same as is done in Algorithm 1, line
6-8. These three lines appear again in Algorithm 6 as lines
8, 16 and 17, but ICPL learns from the outcome of line 16 to
avoid redundant work. It does not record which t-sets have
been covered, as that is done in Algorithm 7 instead.

First of all, the set C'F' maintains a list of features that
have been given an assignment. This enables ICPL to skip
a t-set without having to pass it to the satisfiability solver,
lines 9-15. It also enables us to break the search early, lines

50

Algorithm 6 genConfiguration(FM,T) : C

1: (C,CF,PF) < (0,0,0)
2: for each t-set e in T' do

3: for each assignment a in e do
4: PF < PFU/{a.f}
5. end for
6: end for
7: Loop:
8: for each t-set e in 7' do
9: F+«0
10: for each assignment a in e do
11: F <+ FU{a.f}
12: end for
13: if FF C CF then
14: continue
15: end if
16: if F'M.is_satisfiable(C Ue) then
17: C+CUe
18: CF+ CFUF
19: else
20: for each assignment a in e do
21: if ((e\{a}) CC)A(a ¢ C) then
22: b < a with assignment inverted
23: C + CU{b}
24: CF + CFU{b.f}
25: end if
26: end for
27: end if
28: if |CF| = |PF| then
29: break Loop
30: end if
31: end for

32: return FM.satisfy(C)

28-30, if all features of 7', found in lines 2-6 and stored in
PF, have been given an assignment.

When a t-set leads to unsatisfiability, line 19, and all as-
signments in the t-set except one are already in the configu-
ration, C', line 21, we know that the opposite assignment of
the only exception must be valid. This allows us to update
the configuration, lines 22-24.

Algorithm 6 is guaranteed to give us a valid configuration
that covers many uncovered t-sets. In line 32, we return
a complete, valid configuration by calling the satisfiability
solver. The main loop, lines 8-31, is guaranteed to end
since there are only a finite number of t-sets in 7" which is
not modified inside the loop. If there are valid, uncovered
t-sets, then at least one will get covered on line 17, since set
CF is empty, guaranteeing the check at lines 13 and 28 to
fail until at least one t-set has been covered.

4.4 Finding the Covered t-sets

It is necessary to find the covered t-sets after a configu-
ration was generated by Algorithm 6 because of the opti-
mizations applied to it. In Algorithm 1, the covered t-sets
were collected as they were covered. The result is the same
in both cases: A configuration, C, and the set of covered t-
sets, C'O; but the combined speed is faster since Algorithm 6
is so much more efficient. How the covered t-sets are found
in ICPL is shown in Algorithm 7.

Since ICPL deals with large feature models, it is important
that the outer iteration of Algorithm 7, line 2, is on the set

125

Algorithm 7 genCovered(FM,C,T) : CO

1: CO<«+0

2: for each t-set e in T do
3 if ¢ C C then

4: CO + COU{e}
5
6
7

end if
: end for
: return CO

of uncovered tuples, T'. T' shrinks drastically as our greedy
algorithm covers more and more t-sets. By iterating over
T, Algorithm 7 speeds up towards the end of generating the
covering array.

4.5 Identifying the Invalid t-sets

In Algorithm 1, the invalid t-sets were identified by check-
ing each remaining t-set in turn, lines 18-22. Algorithm 8
does the same thing, but faster.

Algorithm 8 takes the feature model, FM, and the set of
uncovered t-sets, T3 at line 16 of Algorithm 2, and classifies
all the remaining t-sets as either valid, V', or invalid, I, and
returns them.

Algorithm 8 genInvalid(FM,T) : (V,I)

1: (I,V) « (0,0)
2: while T # () do
31 e< any t-set in T
4: if =FM.is_satisfiable(e) then
5 I+ IU{e}
6: T+ T\{e}
7. else
8: V< Vu{e}
9: T+ T\{e}
10: C < FM.satisfy(e)
11: NewV «+ 0
12: for each t-set g in T" do
13: if g C C then
14: NewV «+ NewV U{g}
15: end if
16: end for
17: V +—~ VUNewV
18: T+ T\ NewV
19: end if
20: end while
21: return (V,1)

Each t-set is classified in turn, line 4, and added to and
removed from the respective sets, lines 5—6 and 8-9. Lines
11-18 contain an optimization. If a configuration, found in
line 10, contains one of the unclassified t-sets, we can classify
it as valid.

Algorithm 8 is guaranteed to finish since no elements are
added to T, and each element picked is guaranteed to be
either classified as valid or invalid.

4.6 Parallelization

Modern computers now commonly support truly parallel
execution of programs. Algorithm 1 runs in one process only.
It is neither trivial nor certain that an algorithm or parts of
it can be parallelized, and no automatic way of parallelizing
an arbitrary algorithm exists.

126

51

In ICPL, Algorithm 3, 5, 7 and 8 are all data parallel.
Data parallel algorithms are easy to parallelize [9]. For ex-
ample, if we have an array of integers, the algorithm that
increases each element by 1 is data parallel. If the array has
1000 integers, then, for example, 4 processors can in parallel
increase 250 elements each, giving the same result as if all
1000 had been increased by the same processor.

A similar parallel execution is easily done with the four
data parallel sub-algorithms of ICPL. Each get a set of t-sets
to work with and works on one t-set in each iteration.

Although not shown in the pseudo-code in this paper, our
implementation of ICPL used in the experiment in the next
section uses data parallel execution of these four algorithms,
supporting any number of processors. It is not shown in the
pseudo code because it requires uninteresting boiler-plate
code to set things up properly. Instead, we give a summary
of the parameters that can be split:

Algorithm 3 takes two parameters, the feature model ob-
ject and the set Ti. T4 is split up into n chunks, and the
algorithm is executed in parallel in n threads with each of
the n chunks and a copy of the feature model object. When
all executions are done, there are n results available. These
can be combined into the final result, I;.

Algorithms 5, 7 and 8 are data parallel on parameter T
Their return values can be combined on completion.

S. RESULTS AND COMPARISON

We have set up an experiment® in order to demonstrate
the performance of ICPL and to compare it to the perfor-
mance of existing algorithms. Since the scope of ICPL is re-
alistic feature models, we have reused without modification
a collection of 19 realistic feature models from academia and
industry previously presented in Johansen et al. 2011 [11].
The three largest feature models in our collection were pre-
sented in and provided by She et al. 2011 [22]".

We compared ICPL with Algorithm 1 [11], CASA [7],
IPOG [16], as implemented in the tool NIST ACTS, and
MoSo-PoLiTe [17]. Each algorithm was run 100 times for
each supported coverage strength, 1-3, with 100% coverage.
For each run we recorded the size of the covering array and
the time taken to generate it®.

5.1 Software Setup

We have implemented an open source tool® with ICPL
supporting 1-3-wise covering array generation from feature
models. The algorithm is implemented as described in Sec-
tion 4, including parallelization where applicable. In ad-
dition, our tool supports exporting input to Algorithm 1,
CASA, NIST ACTS (IPOG) and MoSo-PoLiTe, and then
invoking the tools to generate covering arrays. The results
were interpreted by our tool and exported as a Comma Sep-
arated Values (CSV) file.

5The experiment was performed on a machine with four In-
tel Xeon CPU L7555 @1.87GHz with 8 cores with hyper
threading, 128 GiB RAM. The activity on the machine was
limited to 6 threads at 100% activity and 32 GiB of RAM.
All the measurements have been done with open and freely
available software.

"The FreeBSD feature model is partial.

8 All the measurements are available online at http://heim.
ifi.uio.no/martifag/splc2012/.

9The tool is available at http://heim.ifi.uio.no/
martifag/splc2012/, implemented in Java.

Y

Coverage

MoSo-PoLiTe XML

NIST ACTS XML
e

Figure 2: Transformations Used in the Experiment

Covering Array

Figure 2 shows the overview of the tool. The diagram is
of no particular graphical modeling notation. The diamonds
symbolize files with a certain suffix, the boxes symbolize in-
ternal data structures and the arrows symbolize transforma-
tions between the formats.

Since our model collection consists of feature models stored
in three different formats, the tool accepts feature models in
these formats: GUI DSL (model names suffixed with ".m’),
as shipped with earlier versions of Feature IDE; SXFM, the
Simple XML Feature Model format (model names suffixed
with ".xml’) and dimacs (model names suffixed with ’.di-
macs’), a file format for storing propositional formulas in
conjunctive normal form (CNF).

The GUI DSL files can be loaded using the Feature IDE
library. This library allows writing and reading of SXFM
files. Thus, they can be loaded into the SPLAR library*°
along with other SXFM files.

The SPLAR library provides an export to conjunctive nor-
mal form (CNF), a canonical way of representing general
propositional constraints. Thus all the previously loaded
models can be converted into CNF formulas, along with
other formulas stored in dimacs files.

Once a model is in the form of a CNF formula, it can be
given to SAT4J, an open source tool for solving the SAT
problem. Thus, all the feature models can be input to Algo-
rithm 1 and ICPL, which works with feature models in the
CNF format.

The three other tools that implement the algorithms with
which ICPL is compared are available from their respective
providers'!.

The covering arrays are written to a Comma Separated
Values (CSV) file. The covering arrays can then be used to
configure products for which single system testing is applied.

5.2 Verification of Covering Arrays

Our tool can measure the coverage of the covering arrays.
It was ensured that each tool generated a covering array with
100% coverage by using a separate algorithm independent
of any of the compared algorithms. The configurations in
the covering arrays were also separately verified to be valid
configurations. These two features are implemented in the
tool used in the experiment and are available as a part of it.

Ohttp://splar.googlecode. com

"' MoSo-PoLiTe is a part of pure::variants provided by Pure
Systems. CASA is available online at http://cse.unl.edu/
citportal/tools/casa/. NIST ACTS is available online at
http://csrc.nist.gov/

52

5.3 Generating Covering Arrays from Large
Feature Models

Starting from the smallest feature model, we gave each
algorithm 12 hours to complete the generation of a covering
array'?.

ICPL is the only algorithm in our comparison that man-
ages to generate a 1-wise covering array from the Linux ker-
nel feature model (called 2.6.28.6-icsell.dimacs), a 2-
wise covering array from the three largest feature models,
and a 3-wise covering array containing only t-sets with in-
cluded features for two of the largest feature models. The
results are shown in Table 2.

In Table 2, the measurements that are only available in the
experiment from ICPL are shown with a gray background'?.
Notice that a 2-wise covering array can now be generated
from a feature model with almost 7,000 features and 200,000
constraints. This is a big leap up from generating covering
arrays from a feature model with close to 300 features and
only 22 constraints, which is the largest feature model that
one or more of the other algorithms managed to produce a
2-wise covering array from.

5.4 Comparison of the Five Algorithms

Using our experimental setup discussed earlier, all five al-
gorithms were run through the same 19 feature models 100
times. If the time taken to generate 100 covering arrays was
longer than three full days, the results were not included
in the comparison. Figure 3 shows what part of the fea-
ture model corpus from which 100 covering arrays could be
generated correctly'® within three full days'®.

5.4.1 Comparison of Time Performances

Figure 4 shows the statistically estimated time perfor-
mances. The numbers shown are the z’es in O(f*). Thus,
for generating a covering array for a feature model with 1,000
features, a difference of 1 in the estimated value of x means
that it takes 1,000 times longer to generate the covering
array. To make the comparison fair, the basis for the statis-
tical estimates were covering array sizes from the same 16,
14 and 12 feature models were compared for 1, 2 and 3-wise,
respectively.

The fastest algorithm for all three strengths of covering ar-

12The available version of MoSo-PoLiTe does not handle fea-
ture models with propositional constraints above a certain
level of complexity. Thus, we could not use it on five of the
feature models in our corpus, including the four largest ones.
13In Perrouin et al. 2011 [18], it was reported that MoSo-
PoLiTe generated a 3-wise covering array from the feature
model with 287 features. That covering array was of size
841. In our experiments, we observed longer execution times
for MoSo-PoLiTe than what was reported in Perrouin et al.
2011 [18], but it produced similar covering array sizes. ICPL
produces a 3-wise covering array of size 108, an improvement
in covering array size with a factor of 7.8. It was determined
in personal correspondence with the authors that the avail-
able version of MoSo-PoLiTe might be different than the
one used to generate the results in Perrouin et al. 2011 [18].
For our study, we used the only version available to us and
provided by the authors on January 25. 2012.

MFor five of the models, measurements are unavailable for
MoSo-PoLiTe due to the complexity of the constraints in
them. TPOG produced erroneous results for two of the fea-
tures models. These results were therefore not included.
IPOG and MoSo-PoLiTe does not support generating 1-
wise covering arrays.

127

Table 2: Performance of ICPL on Large Feature Models: Feature Models, Satisfiability Times, Covering

Array Sizes and Generation Times.

*Covering arrays for t-sets containing with only included features (1/8th of the t-sets), the memory usage was limited
to 128 GiB instead of 32 GiB, and the algorithm was allowed to run in 64 processors at 100% activity instead of 6.

Constraints] SAT i L-wise . 9 wise . 3-wise
Feature Model\keys Features | (CNF time lfWISe v 2.—W1se W] 3,_Wlse W
Clauses) (ms) size time (S) size time (S) size time (S)
2.6.28.6-icsell.dimacs 6,888 187,193 | 125 5) 89 480 33,702 n/a n/a
freebsd-icsell.dimacs 1,396 17,352 18 9 10 7 240 *78 *2,540
ecos-icsel1l.dimacs 1,244 2,768 12 6 2 63 185 *64 *973
Eshop-fm.xml 287 22 5 3 0.16 21 5 108 457
i(S) O 1-wise 80 oICcPL
60 @Alg. 1
10 0 2-wise 40 OICASA
° W 3-wise 20 ®IPOG*
N~ T N T v T o T 2 0 W MoSo-Polite
\(JQ v\% (J") \QO < 0\{\' 1-wise 2-wise 3-wise
s

Figure 3: Out of the 19 feature models, how many of
them the algorithms managed to correctly produce
100 covering arrays within three full days.

25 fz.s £
f fz 5: f4 icpL

£ ;z £ @Alg. 1

) s s DCASA

f 1 7 m1POG*
fo'5 ;O.& fl’ W MoSo-Polite
£ Twise T 2-wise 7 3-wise

Figure 4: The statistically estimated values of z for
the time taken for generating a covering array in the
form O(f”) from a feature model with f Features.
The times were for the same 16, 14 and 12 feature
models for 1-3-wise covering arrays, respectively.
*The estimates for IPOG are extrapolated since it, as can
be seen in Figure 3, managed considerably less feature
models than the other algorithms.

rays is clearly ICPL. Its statistically estimates performance
is O(f%%), O(f°7%) and O(f"'*) for 1-3-wise covering ar-
ray generation, respectively. Except for Algorithm 1 devel-
oped by us, the second fastest algorithm is MoSo-PoLiTe
with a statistically estimated performance of O(f*7®) and
O(f%%2) for 2 and 3-wise covering array generation.

5.4.2 Comparison of Size Performances

Figure 5 shows the sum of the sizes of covering arrays
for the same 16, 14 and 12 feature models for 1, 2 and 3-
wise, respectively. The sizes of 1-3-wise covering arrays are
approximately the same for ICPL, Algorithm 1 and CASA.
CASA is slightly better in this comparison. MoSo-PoLiTe
produces larger covering arrays overall for both 2 and 3-wise
covering arrays and IPOG for 3-wise covering arrays.

An interesting thing to notice here is that the size perfor-
mance of ICPL and Algorithm 1 are almost identical. This
is not a coincidence, as ICPL is Algorithm 1 with several
speed optimizations.

128

Figure 5: The sum of the sizes of the covering arrays
for the same 16, 14 and 12 feature models for 1, 2
and 3-wise covering arrays, respectively.

*The estimates for IPOG are extrapolated since it, as can
be seen in Figure 3, managed considerably less feature
models than the other algorithms.

120% 200 % — 100 % —
100 % 5 oicpL
05 150 % 80%
@Alg. 1
) 60% &
60 % 100 % 0 CASA
40 %
40% .) BIPOG
50%
20% 20% m MoSo-Polite
0% 0% 0% %—-ﬁ
1-wise 2-wise 3-wise

Figure 6: The sum of standard deviation of the 100
measurements of time over the sum of the average
covering array generation times.

6% 6% 8% —— OICPL
4% 4% 6% @Alg. 1
4%
o, O CASA
2% 2% 2%
mIPOG
0% 0% 0%
1-wise 2-wise 3-wise W MoSo-Polite

Figure 7: The sum of standard deviation of the 100
measurements of size over the sum of the average
covering array sizes.

5.4.3 Effects of Non-Determinism

Each algorithm might have some degree of non-determin-
ism. It was in order to identify such effects that 100 mea-
surements were taken for each tool for each feature model.
These measurements provide us with the standard deviation
both in covering array sizes and in generation times. This is
shown in Figure 6 and 7. Note that the standard deviations
for ICPL and for IPOG are some places as low as 0, meaning
that they run the same time each time they are run.

Only CASA shows a significant standard deviation for the
time taken. A standard deviation of 100% means that the
time taken to generate a covering array is often as long as

double that of the average time taken.
For the sizes of the covering arrays, the standard deviation
is small for all algorithms.

6. THREATS TO VALIDITY

The authors of ICPL are also those who performed the
comparison'® with the other algorithms. Below we discuss
things that might have influenced the result of the compar-
ison.

Corpus Selection.

The feature model corpus consists of feature models not
made by the authors of this paper. They are all used as orig-
inals except for some changes to the names due to differences
in naming requirements in the different formats.

Corpus Completeness.

No feature models were excluded from the corpus except
from their lack of realism. All feature models the authors
were aware of and could verify the origin of were included
in the corpus within the time available for conducting the
experiment.

It is a possibility that the measurements are different given
a more extensive corpus.

Adaptors.

Some of the tools came with limited documentation. The
adaptors!” that convert from the three formats of feature
models in our corpus to input for each of the three other
algorithms were written for the experiment in this paper
and are available as open source. The results produced by
each algorithm were confirmed to be complete and valid by
the same, separate algorithms.

It is, however, possible that the adaptors are unfair to
the other algorithms, and that the algorithms would have
performed better with more suited converters. Had they
been available from the implementations, they would have
been used instead of the ones written by the authors of this
paper.

Other Algorithms.

There are other algorithms which were not included in
the comparison. The algorithm mAETG was neither avail-
able online nor by correspondence with the author. Some
other algorithms which were not considered due to time con-
straints are the ATGT algorithm described in Calvagna and
Gargantini 2009 [1], Microsoft’s PICT Tool, and the algo-
rithm in Grieskamp et al. 2009 [8] which is integrated into
Microsoft’s Spec Explorer for Visual Studio.

Other Strengths.
Empirics were not collected for ¢t >= 4. One of the reasons
for this is that the sizes of the covering arrays, using any al-

16 A complete, functional implementation of ICPL is provided
as open source along with the scripts used to automatically
accumulate the results presented. This makes it possible to
completely reproduce all results reported in this paper. Also,
all the measurements done in our experiment are available
online. Implementations of the other algorithms are avail-
able from the respective sources.

"The adaptors are available as open source from http://
heim.ifi.uio.no/martifag/splc2012/.

54

gorithm, then becomes significantly larger than the number
of features in the feature model from which it is generated.
A second reason is that empirics indicate that 95% of bugs
can be attributed to the interaction of 3 features [15]. If the
quality requirements are above this level, it is not yet estab-
lished that combinatorial interaction testing is the approach
that should be taken in the first place.

7. FUTURE WORK

Make a Specialized Feature Model Satisfier.

Since feature models are easy to configure but might be
hard to convert to CNF [24], a specialized configurator for
feature models that exploits the specific properties of feature
models to satisfy it without converting it to a CNF formula
would solve the problem of not converting the formula to
CNF.

Find Additional Improvements.

We have not ruled out further improvements upon ICPL.
ICPL is made available as open source so that it can be used
for further research.

Finding a way to parallelize the part of ICPL which is not
parallelized would increase the speed further.

Find a More Efficient t-set Storage.

A clear improvement to ICPL is more effectively storing
the t-sets. Storing the t-sets is the cause of the high memory
requirement of the algorithm.

8. CONCLUSION

In this paper, an algorithm for t-wise covering arrays,
called ICPL, was presented. ICPL handles some of the
largest feature models available, produces covering arrays
of an acceptable size and has low standard deviation due to
its non-determinism.

ICPL was compared to three other algorithms that handle
the same problem. Within 12 hours, ICPL was the only one
to handle the three largest feature models for 2-wise cover-
ing array generation. Within 3 whole days, each algorithm
was run 100 times for each feature model. ICPL has the
highest scalability overall for 1-3-wise covering array gener-
ation and generates covering array quickly. No variation in
covering array size was observed, and the time taken varies
insignificantly. Thus ICPL enables the application of com-
binatorial interaction testing to significantly larger software
product lines than before.

9. ACKNOWLEDGMENTS

The work presented here has been developed within the
VERDE project ITEA 2 - ip8020. VERDE is a project
within the ITEA 2 - Eureka framework.

The authors would like to thank Ina Schaefer and the
anonymous reviewers for their helpful feedback.

The authors would also like to thank Daniel Le Berre
for his assistance on SAT4J, Brady J. Garvin for answer-
ing questions related to CASA and mAETG, and Sebastian
Oster for answering questions related to MoSo-PoLiTe.

129

10.

(1]

[10]

[11]

[12]

REFERENCES

A. Calvagna and A. Gargantini. Combining
satisfiability solving and heuristics to constrained
combinatorial interaction testing. In C. Dubois, editor,
Tests and Proofs, volume 5668 of Lecture Notes in
Computer Science, pages 27-42. Springer Berlin /
Heidelberg, 2009.

V. Chvatal. A greedy heuristic for the Set-Covering
problem. Mathematics of Operations Research,
4(3):233-235, 1979.

M. B. Cohen, M. B. Dwyer, and J. Shi. Constructing
interaction test suites for highly-configurable systems
in the presence of constraints: A greedy approach.
IEEE Transactions on Software Engineering,
34:633-650, 2008.

K. Czarnecki and U. Eisenecker. Generative
programming: methods, tools, and applications. ACM
Press/Addison-Wesley Publishing Co. New York, NY,
USA, 2000.

E. Engstrom and P. Runeson. Software product line
testing - a systematic mapping study. Information and
Software Technology, 53(1):2 — 13, 2011.

S. Fouché, M. B. Cohen, and A. Porter. Incremental
covering array failure characterization in large
configuration spaces. In Proceedings of the eighteenth
international symposium on Software testing and
analysis, ISSTA ’09, pages 177-188, New York, NY,
USA, 2009. ACM.

B. J. Garvin, M. B. Cohen, and M. B. Dwyer.
Evaluating improvements to a meta-heuristic search
for constrained interaction testing. Empirical Softw.
Engg., 16:61-102, February 2011.

W. Grieskamp, X. Qu, X. Wei, N. Kicillof, and

M. Cohen. Interaction coverage meets path coverage
by smt constraint solving. In M. Nunez, P. Baker, and
M. Merayo, editors, Testing of Software and
Communication Systems, volume 5826 of Lecture
Notes in Computer Science, pages 97-112. Springer
Berlin / Heidelberg, 2009.

W. D. Hillis and G. L. Steele, Jr. Data parallel
algorithms. Commun. ACM, 29(12):1170-1183, Dec.
1986.

M. Janota. SAT Solving in Interactive Configuration.
PhD thesis, University College Dublin, 2010.

M. F. Johansen, @. Haugen, and F. Fleurey.
Properties of realistic feature models make
combinatorial testing of product lines feasible. In

J. Whittle, T. Clark, and T. Kuehne, editors,
Proceedings of Model Driven Engineering Languages
and Systems, 14th International Conference,
MODELS 2011, pages 638-652, Wellington, New
Zealand, October 2011. Springer, Heidelberg.

M. F. Johansen, (). Haugen, and F. Fleurey. A survey
of empirics of strategies for software product line
testing. In L. O’Conner, editor, Proceedings of the
2011 IEEE Fourth International Conference on

130

55

(14]

(17]

(21]

(22]

(23]

(24]

Software Testing, Verification and Validation
Workshops, ICSTW ’11, pages 266-269, Washington,
DC, USA, 2011. IEEE Computer Society.

K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak,
and A. S. Peterson. Feature-oriented domain analysis
(foda) feasibility study. Technical report,
Carnegie-Mellon University Software Engineering
Institute, November 1990.

C. H. P. Kim, D. S. Batory, and S. Khurshid.
Reducing combinatorics in testing product lines. In
Proceedings of the tenth international conference on
Aspect-oriented software development, AOSD ’11,
pages 57-68, New York, NY, USA, 2011. ACM.

D. R. Kuhn, D. R. Wallace, and A. M. Gallo. Software
fault interactions and implications for software testing.
IEEE Transactions on Software Engineering,
30(6):418-421, 2004.

Y. Lei, R. Kacker, D. Kuhn, V. Okun, and

J. Lawrence. Ipog: A general strategy for t-way
software testing. In Engineering of Computer-Based
Systems, 2007. ECBS’07. 14th Annual IEEE
International Conference and Workshops on the, pages
549-556. IEEE, 2007.

S. Oster, F. Markert, and P. Ritter. Automated
incremental pairwise testing of software product lines.
In J. Bosch and J. Lee, editors, SPLC, volume 6287 of
Lecture Notes in Computer Science, pages 196-210.
Springer, 2010.

G. Perrouin, S. Oster, S. Sen, J. Klein, B. Baudry, and
Y. le Traon. Pairwise testing for software product
lines: Comparison of two approaches. Software Quality
Journal, 2011.

K. Pohl, G. Bockle, and F. J. v. d. Linden. Software
Product Line Engineering: Foundations, Principles
and Techniques. Springer-Verlag New York, Inc.,
Secaucus, NJ, USA, 2005.

A. Reuys, S. Reis, E. Kamsties, and K. Pohl. The
scented method for testing software product lines. In
T. Kdkola and J. C. Duenas, editors, Software Product
Lines, pages 479-520. Springer, Berlin, Heidelberg,
2006.

J. Rivieres and W. Beaton. Eclipse Platform Technical
Overview, 2006.

S. She, R. Lotufo, T. Berger, A. Wasowski, and

K. Czarnecki. Reverse engineering feature models. In
R. N. Taylor, H. Gall, and N. Medvidovic, editors,
ICSE, pages 461-470. ACM, 2011.

E. Uzuncaova, S. Khurshid, and D. Batory.
Incremental test generation for software product lines.
Software Engineering, IEEE Transactions on,
36(3):309 —322, may-june 2010.

T. Walsh. Sat v csp. In R. Dechter, editor, Principles
and Practice of Constraint Programming — CP 2000,
volume 1894 of Lecture Notes in Computer Science,
pages 441-456. Springer Berlin / Heidelberg, 2000.

Chapter 9

Paper 3: Bow Tie Testing: A Testing
Pattern for Product Lines

131

Bow Tie Testing - A Testing Pattern for Product Lines

MARTIN F. JOHANSEN, SINTEF and Institute for Informatics, University of Oslo
QYSTEIN HAUGEN, SINTEF
FRANCK FLEUREY, SINTEF

Verification of highly configurable systems poses a significant challenge, the challenge of knowing that every configuration works when
there often are intractably many different configurations. When a homogeneous abstraction layer has many mutually exclusive alternative
implementations, we might, according to the polymorphic server test pattern, test these implementations using one test suite targeted towards
the abstraction layer which is then run for each concrete implementation of the abstraction layer. But, the pattern does not handle interaction
testing. Combinatorial interaction testing is one of the more promising techniques for doing interaction testing of a software product line. The
BOW TIE TESTING PATTERN describes how the configurations which differ only in the implementation layer require one test suite. In addition,
comparing the execution results of one product with another provides for a test oracle. The pattern reduces the effort of testing a highly
configurable system without reducing the error detection capabilities provided by ordinary combinatorial interaction testing. We present an
example of a subset of the Eclipse IDE product line, and show that only 20 test suites is required to test 41 products, a significant reduction.

Categories and Subject Descriptors: D.2.5 [SOFTWARE ENGINEERING]: Testing and Debugging— Testing tools; D.2.11 [SOFTWARE
ENGINEERING]: Software Architectures—Patterns; D.2.13 [SOFTWARE ENGINEERING]: Reusable Software—Domain engineering

General Terms: Design, Theory, Verification
Additional Key Words and Phrases: Software product lines

ACM Reference Format:
Johansen, M. F,, Haugen, & and Fleurey, F. 2011. Bow Tie Testing - A Testing Pattern for Product Lines jn 16, 1, Article (July 2011), 13 pages.

1. INTRODUCTION

Today, there is no recommended approach from the software product line research community on how to verify
software product lines, but there are a number of suggestions. The BOW TIE TESTING PATTERN is a partial solution
to the problem of verifying product lines within the context of one of the most promising approaches, combinatorial
interaction testing, explained in Section 2. A complete approach for verifying product lines would probably consist
of a number of patterns and techniques. The BOW TIE TESTING PATTERN identifies a commonly occurring structure
found within product lines, which we call a bow tie, presented in Section 3. We exploit the nature of this structure
when present to improve upon combinatorial interaction testing. This is presented in Section 4 as the Bow TIE
TESTING PATTERN. The paper finishes with a short discussion of how a product line can be restructured to enable
the application of the BOwW TIE TESTING PATTERN, Section 5; and a look at similar patterns, Section 6.

The work presented here has been developed within the VERDE project ITEA 2 - ip8020. VERDE is a project within the ITEA 2 - Eureka
framework.

Author’s address: Martin F. Johansen, Qystein Haugen, Franck Fleurey; SINTEF ICT, Pb. 124 Blindern, 0314 Oslo, Norway; email:
{Martin.Fagereng.Johansen, Oystein.Haugen, Franck.Fleurey}@sintef.no

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first
page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission. A preliminary version
of this paper was presented in a writers’ workshop at the 16th European Conference on Pattern Languages of Programs (EuroPLoP).
EuroPLoP 2011, July 13 - 17 2011, Irsee, Germany. Copyright (© 2012 ACM 978-1-4503-1302-5/11/07. .. $15.00.

133

EclipseSPL

WindowingSystem Hardware Team EclipseFileSystem
/f\ %N !
[Win32] [GTK] [Motif] [Carbon] [Cocoa] os || xe6 [x86_64] SPARC] PPC [PPC64] [ia64_32] [390] [$390x] Ces/% Zip
l 0OS_Win32 l l Linux l l MacOSX l l Solaris l AIX l hpux l CVS_Over_SSH Subclipse
Additional Constraints: Carbon A MacOSX A x86 v Cocoa A MacOSX A (x86 v x86_64) v GTK A Linux A PPC v
GTK A Linux A PPC64 v GTK A Linux A s390 v GTK A Linux A s390x v GTK A Linux A x86 v GTK A Linux A x86_64 v - -
GTK A Solaris A SPARC v GTK A Solaris A x86 v Motif A AIX A PPC v Motif A hpux A ia64_32 v Motif A Linux A x86 v l CVS_Over_SSH2 l l Subclipse_1_4_x l l Subclipse_1_6_x l

Win32 A OS_Win32 A x86 v Win32 A OS_Win32 A x86_64

Fig. 1. Feature model for a subset of Eclipse

2. BACKGROUND AND MOTIVATING EXAMPLE
2.1 Software Product Lines

A software product line [Pohl et al. 2005] is a collection of systems with a considerable amount of code in common.
The primary motivation for structuring one’s systems as a product line is to allow customers to have a system
tailored for their purpose and needs, while still avoiding redundancy of code during production. It is also common
for customers to have conflicting requirements; in which case it is not even possible to ship one system for all
customers.

The Eclipse products [Rivieres and Beaton 2006] can be seen as a software product line. Today, Eclipse lists 12
products on their download page, eclipse.org/downloads/. These products share many components, but all
components are not offered together as one single product. The reason is that the download would be unnecessary
large, since, for example, a C++ systems programmer would not likely need to use the PHP features. It would also
bloat the system by giving the user many unnecessary alternatives when, for example, creating a new project.
Some products contain early developer releases of some components, such as Eclipse for modeling. Including
these would compromise the stability for the other products. Thus, it should be clear why offering specialized
products for different use cases is good. A subset of the Eclipse product line will be used as a running example in
this paper.

One way to model the commonalities and differences in a product line is using a feature model [Kang et al.
1990]. A feature model sets up the commonalities and differences of a product line in a tree such that configuring
the product line proceeds from the root of the tree. See for example a feature model for a subset of Eclipse in
Figure 1. Proceeding from the root, configuring the product line consists of making a decision for each node in the
tree. Each node represents a feature of the product line. The nature of this decision is modeled as a decoration
on the edges going from a node to another. For example, for Eclipse, one have to chose one windowing system
which one wants Eclipse to run under. This is modeled as an empty semi-circle on the outgoing edges. When
one is to choose a team-functionality provider, one can choose none or all. This is modeled as an empty circle at
the top of each node. This means that that feature is optional. A filled circle means that the feature is mandatory.
One have to configure the feature model from the root, and one can only include a feature when the preceding
feature is selected. For example, supporting CVS over SSH requires that one has CVS. In addition, if there are
constraints that are impossible or impractical to put in the three-structure of the feature model, textual constraints
can be added below the three. These are written in common propositional logic. In the working example, not all
combinations of windowing systems, OSes and hardware are supported. Therefore, only those that are supported
are allowed in a long propositional constraint.

Bow Tie Testing - A Testing Pattern for Product Lines — Page 2

134

The parts that can be different in the products of a product line are usually called its variability. One particular
product in the product line is called a variant and is specified by a configuration of the feature model. Such a
configuration consists of specifying whether each feature is included or not.

2.2 Verification of Software Product Lines

Verifying a software product line poses a number of new challenges compared to verifying single systems. One has
to ensure that each possible configuration of the product line functions correctly. One way to verify a product line is
through testing, but testing is done on a running system. The software product line is simply a collection of many
systems. One cannot test each possible system, since the number of systems in general grows exponentially with
the number of optional features in the product line. In our running example, the number of possible configurations
is 1024, and this is a relatively simple product line.

There is no single recommended approach available today for verifying product lines efficiently [Engstrébm and
Runeson 2011], but there are many suggestions. Some of the more promising suggestions are combinatorial
interaction testing [Cohen et al. 2008], discussed below; reusable component testing, frequently seen in industry
[Johansen et al. 2011], but which does not test for interaction faults in the product line; a technique called ScenTED,
where the idea is to express the commonalities and differences on the UML model of the product line and then
derive concrete test cases by analyzing it [Reuys et al. 2006], which has seen recent development as ScenTED-DF
[Stricker et al. 2010] for detecting redundant test cases based on data path analysis of the product line’s UML
model; and incremental testing, where the idea is to automatically adapt a test case from one product to the next
using the specification of similarities and differences between the products [Uzuncaova et al. 2010].

2.3 Combinatorial Interaction Testing

One of the most promising approaches for verifying product lines is called combinatorial interaction testing [Cohen
et al. 2008]. The benefit of this approach is that it deals directly with the feature model and then allows for the
application of single system testing techniques, of which there are many good ones. The idea is to select a small
subset of products where the interaction faults are most likely to occur. For example, we can select the subset of
all possible products where each interaction between a pair of features is tested. This includes testing the cases
where both features are present, when one is present, and when none are present. Table | shows the 41 products
that one must test to ensure that every pair of interaction between the features in the Eclipse product line functions
correctly. Each row represents one feature and every column one product. ’X’ means that the feature is included
for the product, ' means that the feature is not included. Some feature are included for every product because
they are mandatory. The last row contains ’'R’s. The significance of these will be explained later.

Testing every pair is called 2-wise testing, or pair-wise testing. A covering array that contains products with every
pair is called a 2-wise, or pair-wise, covering array. This is a special case of t-wise coverage where t = 2. 1-wise
coverage means that every feature is at least included and excluded in one product. 3-wise coverage means that
every combination of three features are tested. For our running example, 119 products are required to achieve
3-wise coverage.

[Kuhn et al. 2004] showed empirically that most bugs are found for 6-wise coverage, and that for 1-wise one is
likely to find on average around 50%, for 2-wise on average around 70%, for 3-wise around 95%, etc. Thus, it is
reasonable for product lines not highly critical to aim for 3-wise testing.

It should be noted that [Kuhn et al. 2004] result is about combinations of program input and configuration
variables. This is not precisely feature interactions, but until proper confirmation of these results for product lines
are available, these are the best indications for the probability of faults occuring in feature interactions of a low
degree.

Bow Tie Testing - A Testing Pattern for Product Lines — Page 3

135

Table I. Pair-wise coverage of the feature model in Figure 1 the test suites numbered
Feature\Product 01/020304{0506/07/08(09/1011(1211314{15(16/17[18192021[222324252627282930131/3233{34:3536[3 713839404 1
EclipseSPL XX XXX XXX XXX XX XXX XX XXX X XXX XXX XX XX XXX XX XX
X
X

x X

X X X

WindowingSystem | X | X | X | X[X | X| X X | X | X | X[X X] X X | XX | X[X[X]X]X] XXX X XX X[X| X]| X [X
Win32 BN N I I I I D QI I I I I I I I I S I I D ¢ -] - X -

GTK - [XX X[X| X
Motif
Carbon -
Cocoa X
OSs X
OS_Win32 B -
Linux SIX] XX - UK X] XX X -] XXX X - - XX -] XX -] -
MacOSX X=X -] [X[-[X|X]=]==-1=1-1-{-1={-1-1-1-1-\X[-{-1-1-]-]1-]1-]-]-|X|X
Solaris S UX) X X - -
AlIX
hpux - -
Hardware XX X[X[X|X|X|X
x86 X X -
x86_64 SR D 4D SN BN R N N D4 N S I I I I I I N I I D I I D ¢ I I -
SPARC SN DS IEN N N I D I N I I O I N I I I I S I I I I I R DG I I I I N I N D S
PPC SN N N I I N I I N I I S I D G D 4 S I I I D I I I I I D4 I N I I I D G I I I I
PPC64 SIXP- -]
ia64_32 -] - X
s390
s$390x
Team X|X|X
CVS_Over_SSH SRR
CVS_Over SSH2 | -|-|-|-|-]-]|-|-|-
SVN
Subversive B Y
Subclipse
Subclipse_1_4_x B N S I N I Y P
Subclipse_1_6_x BN N I N I Y P
GIT -
EclipseFileSystem |X
Local X

X X X
x
x
x
x
<

XXX - XXX L= XXX - - XX L] XXX -] -

>
>
>
>

X X
X
X
> 1
VX
X
> 1
X
> 1
X
X

X
>
X

X
X

x
X
X

X
X

X X

X

X

X

X

X

! x

>

! X

! X

! X

! X

! X

X X

X X X X

XXX X X

XXX X X

XXX X X

XXX X X
XXX XX X

>
x
X
X
X
X
>
> 1
> 1
x
X
X
X X
X X
X X
>
X X

>
>
>
>
X X
>
X X
>
X X
>
>
>
>
>

X X X X
XXX X X

X
X X
TX X X X X ¢«

x X
x X
X X
x X

X
X
>
>
X
X

X X
>
X X
X X
X X
>
X X
X X
X X
X X
X X
X X
X X
X X
X X X
X X X
X X X X
X X X
X X X X
X X X X
X X
X X

)
)
)
)
)
)
)
]
)
)
o)
)
)
)
)
)
)
)
)

3. THE BOW TIE STRUCTURE

There is a certain structure that is repeatedly occurring in industrial software product lines: Using an abstraction
layer with multiple implementations is a way of supporting various different systems generically, so that one can on
one side use the same code to interact with different systems. If this interaction is generic then one is avoiding
writing redundant code and one can work with one code base above the abstraction layer. The mechanism
providing this generic interface to various different implementations is called a homogeneous abstraction layer.

A homogeneous abstraction layer is an interface which implementations yield essentially the same functionality
no matter which concrete implementation of it one is using. The code accessing the functionality through the
abstraction layer does not have to be concerned with which concrete implementations it is. Examples are the
widgets of Linux and Windows which both provide buttons, radio buttons and check boxes. The rendering and the
technology for showing these to the user is different, but the same basic functionality is provided to software using
an abstract button, radio button and check boxes.

Bow Tie Testing - A Testing Pattern for Product Lines — Page 4

136

Concrete implementations: Abstraction layer: Other features:

Windows, x86 CVs

Linux, GTK, x86 <€ WS, OS, Hardware <€ SVN

T

Mac, Carbon, x86 Zip

Fig. 2. The Bow tie structure

If the functionality is essentially different, then the abstraction layer is not homogeneous. For example, two layout
algorithms might yield different layouts, in that case what is returned by the concrete layout algorithms is different,
and thus the abstraction layer is not homogeneous.

In the running example, the particular features for each windowing system, OS and Hardware are all used
through an abstraction layer. The features implementing support for team functionality, CVS, SVN and git in
our example, all interact with the abstraction layer only, but for each product of Eclipse, one of the concrete
implementations of the abstraction layer must be present.

This forms a structure similar to a bow tie, as shown in Figure 2. The components on the right side are using
one of various implementations of an abstraction layer, but only depend on and interact with the abstraction layer.

In the following quote, [Cabral et al. 2010] explains the difficulty of testing configurable systems with mutually
exclusive alternative features, of which alternative implementations of an abstraction layer is a special case.
"Alternative features are features that are mutually exclusive and present a more difficult challenge for testability.
We argue that these are the true deterrents to testability since only one feature can be present in an SPL [Software
Product Line] at a time."

4. PATTERN: BOW TIE TESTING
4.1 Context: The circumstances under which the problem appears

One’s software product line includes different implementations of one or more homogeneous abstraction layers. It
is important that the other parts of the product line use the concrete implementations through the abstraction layer
only. Thus, one is able to identify a bow tie structure where the left side contains the concrete implementations
of the abstraction layer, and the right side which includes the other features that interact with the concrete
implementations of the abstraction layer. The abstraction layer itself is the knot of the bow tie.

Discussion. A software product line is typically configured by the provider of the product line. Highly configurable
systems typically allow the customer to configure the system at run time. This does not lessen the importance of
testing that every configuration works.

Having to support multiple versions of the same feature is usual in software development. The alternative versions
of the same feature can be seen as mutually exclusive alternatives, and thus qualify as (partial) implementations
of a homogeneous abstraction layer (the left side the bow tie structure).

Supported configuration alternatives deferred to the user also applies. For example, a 32-bit Windows executable
will run on all supported versions of the Windows operating system today. This does not lessen the importance of
testing interactions between the features of a product line and the different versions of windows.

Bow Tie Testing - A Testing Pattern for Product Lines — Page 5

137

Select

Create new projects from an archive file or directory.

Select an import source:

;----1_1 File System
; EL preferences
B-E cvs

“r, Projects from CVS

BB Git
L <, Projects from Git
B SVN
2 project from SYN

(a) Import a new project

0 Synchronize with Repository Ctrl-+Alt+5
| Commit...

| Update Cirl+Alt+U
Update to Revision... Ctrl+alt+D
Create Patch... Ctrl+Alt+P
Apply Patch...

i A4 A

Synchronize with Repository
Commit...

Update

Create Patch...

Apply Patch. ..

5 Revert...
Add to Version Contral...
Add ta symianore,
Edit Conflicts

Edit Tree Conflicts

T Tag as Version...
T Branch...
‘ﬁkMerge. -
Switch to Another Branch or Version...

&)} Show History

& Lock... Cirl+HAlt -+
‘% Unlock, ..

Sran | arka

(b) Part of the SVN Team Menu

Change ASCII/Binary Property...

Restore from Repository...
Revert to Base
Chnw Frlitmra

(c) Part of the CVS Team Menu

Fig. 3. Example of an invalid context in the Eclipse IDE

In our running example we have identified the abstraction layer and the left and right sides of the bow tie
structure in Figure 2.

If one has a structure where some of the interactions are directly to a concrete implementation, or the abstraction
layer is only partly homogeneous, one might consider restructuring the product line so that one gets a clear
separation and a homogeneous abstraction layer. Such restructurings are discussed in Section 5. Then, one can
apply the pattern.

Examples of valid contexts

—The Eclipse IDE, exemplified by our running example, runs on 16 different combinations of windowing system,
operating system and hardware, but the behavior of the system is the same regardless of how the buttons and
windows are rendered.

—Apache Commons Virtual File System is an abstraction layer to more than ten different files systems. Being a
part of Apache Commons, this abstraction layer is used by many other components.

—One of our case studies is a tax reporting system that requires accounting information. It has a homogeneous
abstraction layer to 17 different accounting systems. The accounting system abstraction layer is used by many
other components, and it is an important part of its architecture that the abstraction layer is homogeneous.

Examples of an invalid context. In our running example, the three types of version control systems: CVS, SVN
and git, could potentially be accessed through a homogeneous abstraction layer. But, the Eclipse project has
decided to allow the different version control systems to provide varying functionality. Thus, that part of the product
line is not within the context of the pattern.

Figure 3 shows three windows from Eclipse. Figure 3(a) shows that when importing a project, one does not
have a generic import wizard, rather one have one for each type of team functionality, one for CVS, SVN and
git. This is because they provide different functionality. Figure 3(b) and 3(c) shows the context menus for SVN
and CVS project respectively. Many of the alternatives are similar, such as commit and update, but many of the
alternatives are also different, such as specifying whether you are working with text or binary files, not needed for
SVN. Providing a single common context menu for CVS and SVN clearly would retain the majority of the features.

4.2 Problem

The homogeneous abstraction layers in a software product line requires that one has exactly one im-
plementation present at any time, the number of possible configurations of the software product line

Bow Tie Testing - A Testing Pattern for Product Lines — Page 6

138

grows quickly with the number of alternative implementations. How can one execute tests against a soft-
ware product line containing such a structure to know that all products in the product line will work?
Combinatorial interaction testing allows us to test feature interactions, but alternative features deters its
performance. Can one deal with the increase caused by the alternative implementations of an abstraction
layer?

4.3 Forces

—Testing Several Feature Interactions: Highly configurable systems usually have an enormous number of
potential configurations. One cannot simply build all of the systems and test them. The number of systems
grows exponentially with the number of features in, for example, a feature model defining a product line. Mutually
exclusive alternative configuration options increase the number of possible configurations significantly. The
reason is that the ability to test several feature interactions at once is reduced due to the mutual exclusion
between the options.

—Redundant Work: Testing each alternative independently results in redundant work in the creation of the test
suites because of the similarities between the implementations of the abstraction layer.

—Test Suite Increase: If one adds a new configuration option to the system, how then must the test suite of the
system be modified, now maybe with an order of magnitude more possible configurations? In essence, adding a
new option increases the number of test suites required to test the system.

—AlImost Identical Test Suites: Even though one has several implementations of the same abstraction layer,
how can one reuse the knowledge from testing one of them when testing another? Even if the abstraction layer
is homogeneous, the concrete implementations are different. The test suites for each particular alternative are
not exactly the same, nor do they necessarily execute in a similar manner such that their execution traces can
be compared.

—Versions Add Variability: Often, configurable systems must operate with several versions of the same compo-
nent. Different companies have different policies about adopting a new version of a component. A company
delivering a system might have to support an old version of a component for some time. Different versions of the
same implementation of an abstraction layer increases the configuration space of the system even more.

—Configuration Diversity: One must make sure that a particular configuration within the intractable configuration
space does not contain a bug, and one cannot predict how the next customer will configure the system.

4.4 Solution

Perform interaction testing by testing each product of a t-wise coverage array of the product line. In the
coverage arrays, whenever configurations differ only inside a homogeneous abstraction layer, create one
test suite and execute it against those products and expect it to pass for all these products. Make these
products log the generic parts of their execution, and have them vote for the correct execution using a
voting oracle.

4.4.1 Further Details. 1t is a good idea to start with 1-wise and proceed as far as necessary according to how
well tested the system must be. [Kuhn et al. 2004] reports empirics about the percentage of bugs expected at each
stage.

Expect the number of products that can be tested by the same test suite to increase as one increases the
coverage strength, but to decrease as one increases the number of optional features not inside an abstraction
layer.

Additionally, one can add a voting oracle [Binder 1999]. Say one is executing the same test suite against three
products. Make the products log the generic parts of their execution. After the three test suites have been run,
compare the executions of each product. If there is a disagreement in the execution, then one has either logged
non-generic information or there is a bug in at least one of the implementations of the abstraction layer.

Bow Tie Testing - A Testing Pattern for Product Lines — Page 7

139

O OO0 Mac05X &¢[= Photon - 0%
—{ Widget | Toolkit widget " (Taolkit,
Standard Widget standard |Wldgat | =]
v Efficient Pon:ablem ENEATErorE]
Cross Platform reient - Fortabie
P Native Controls 5 Ereee FREGEm | |
g Native Controls [
™ Totally [Awesome) | Totally Awesome
|
(a) Windows (b) Linux, GTK (c) Linux, Motif (d) Mac (e) Mac, Photon

Fig. 4. Different products in a product line using SWT’s abstraction layer (Taken from http://www.eclipse.org/swt/, May 2011)

4.4.2 Example 1. The pair-wise covering array of the running example is shown in Table I. The products
differing only in the implementations of the abstraction layer are the 21 products with an R written in the last row.
For the products with an R, the test suite from the previous product can be used to test it. Instead of 41 test suites,
one now only require 20. For example, test suite number 1 tests Eclipse without any optional plug-ins. The eight
following products only differ below the abstraction layer. These products can be configured and set up on their
respective platforms. The test suite is programmed and as the tests are run, the execution traces for each is written
to a file. If one of the test suites fails for one product, but succeeds for the other, then one knows there is a problem
in one of the implementations of the abstraction layer. If the execution logs differ, one must look into the differences
and examine why it happened.

Covering the system with 1-wise testing gives 10 products and only 5 test suites required.

For 2-wise testing, with 41 configurations, only 20 test suites were required as just discussed.

For 3-wise testing, with 119 configurations, only 45 test suites are required.’

443 Example 2. Say one has configured the five applications shown in Figure 4. These applications, as can
be seen, differ only in their implementation of the rendering engine, the hardware and the interaction with the OS.

If one makes a test case which asks to select the fourth element in the list, select the check box and press the
button, one expects the same result in terms of the action invoked by pressing the button in all five cases. It is
likely that a bug in one of the interactions with the OS, one of the renderings of the graphics or one causes an
error in one of the five applications.

4.5 Consequences
4.5.1 What happens when the solution is applied

—Testing Several Feature Interactions: The number of test suites needed to do combinatorial interaction testing
of the product line is reduced. When two configurations in, for example, a pair-wise coverage of a product line
has different combinations inside the abstraction layer, but the same outside, one test suite can be written that
can be executed for both configurations inside the abstraction layer. T-wise coverage ensures that, for example,
every pair of features is tested together. By applying the pattern, one acquires the ability to test several feature
interactions with the same test suite.

—Redundant Work: One knows how to test in situations of highly configurable systems where one has an
abstraction layer and multiple implementations. One avoids redundant work since one does not have to create
tests that tests similar functionality many times.

LA tool for generating covering arrays and the reduction is freely available online as open source at http://heim.ifi.uio.no/martifag/
europlop2011/splcatool/

Bow Tie Testing - A Testing Pattern for Product Lines — Page 8

140

—Test Suite Increase: If one decides to add a new implementation of the abstraction layer, the test suite for this
implementation exists already and can be reused. In regards to interaction testing, some of the configurations
required for, for example, pair-wise coverage can be reused.

—AlImost Identical Test Suites: /t is possible to compare the generic execution traces of the abstraction layer to
verify that the implementations of the abstraction layer provide functionality that makes the abstraction layer
homogeneous.

—Versions Add Variability: The pattern also applies to configurable systems where there are several versions of
the same feature in use with compatible interfaces. These differing versions can be tested with the same partial
test suite, and the results for each version can be compared, a well-known regression testing technique.

—Configuration Diversity: Applying combinatorial interaction testing to cover all pair and triples etc. of interaction
makes one know that whatever pairs and triples etc. the customer chooses, they will work together.

4.5.2 Liabilities of the solution

—The solution does not make sense if the abstraction layer contains the union of functionality of the implementa-
tions. The intersection has to be considerable in order for the application of this pattern to pay off.

—The abstraction layer cannot be too general. For example, the team provider functionality in Eclipse has multiple
implementations: CVS, SVN, git, etc. But, the functionality the implementations offer is different. Thus, one have
to supply one test suite per provider, and that is also what is done in the Eclipse project.

—If one decides to make available implementation-specific behavior in the abstraction layer, then the benefits of
the pattern no longer applies, and one will have to significantly change the test suites.

—Even though the test cases might be the same for all implementations, the initializations of the test suites might
be different. An example of this is the Apache Virtual File System test suite. It needs to set up different file
systems before executing the generic test suite.

4.6 Known uses

There are no known uses of this pattern in its entirety, but the following three examples partly use the Bow TIE
TESTING PATTERN, and is therefore included to show that all benefits of the pattern is present partly when the
pattern is partly used.

4.6.1 Eclipse Standard Widget Toolkit (SWT). A part of this pattern is used to test the Eclipse Standard Widget
Toolkit (SWT 2011), used in Eclipse as an abstraction layer on top of differing windowing systems, operating
systems and hardware. Figure 4 shows the same application running in five different configurations.

Even though there are many more possible combinations, Eclipse has only implemented 16 of the combinations
of windowing system, operating system and hardware; thus, the feature model contains additional constraints
restricting which combinations can be chosen (see Figure 1). Eclipse SWT is 14% of the total Eclipse Platform
Source Code.

The test suite of SWT contains over 5,600 test cases, with statement coverage of 32%. This test suite package
only requires the abstraction layer package in order to execute.

This test suite is reused for each configuration with a unique combination of windowing system, OS and platform.

In Eclipse, testing of other components as a part of Eclipse is not dependent on a specific windowing system,
OS or platform. Thus, these test suites can be reused for each concrete implementation of the abstraction layers
towards windowing system, operating system and hardware.

Table 1l shows the resulting statement coverage for running the single SWT test suite on three different
configurations of Eclipse. Notice that the coverage is similar for the concrete implementations. (It is unrealistic to
achieve 100% statement coverage since, for example, many special cases are handled in exception blocks.)

Bow Tie Testing - A Testing Pattern for Product Lines — Page 9

141

Table Il. Statement coverage of executing the SWT generic test suite for three concrete implementations

Element (Java only) Statement Coverage | Covered Instructions | Total Instructions
org.eclipse.swt.internal.motif (Linux, 32-bit) 59.80 % 5,242 8,763
org.eclipse.swt.internal.win32 (64-bit) 44.30 % 2,455 5,537
org.eclipse.swt.internal.gtk (Linux, 32-bit) 45.40 % 9,938 21,877

4.6.2 Apache VFS. Apache Commons Virtual File System (VFS) supports ten different file systems and uses
one test suite which interfaces with the abstraction layer. Even though the test cases are the same for all the
implementations, the initializations of the test suites are specific for each file system. The implementation that
enables file system access to tar-files sets up an example tar file, while the memory file system loads a file into
memory. The specific initialization accounts for a small amount of the total test code for each implementation.

4.6.3 Tax reporting systems. A tax reporting system has been studied which is a product line consisting of nine
main products which address many problems in the reporting of accounting data to the public authorities. These
nine products defer many configuration options to users, making the actual number of configurations intractable.
The product line is developed by Finale Systems, a Norwegian company which specializes in this domain.

They use the checking system discussed above to compare the execution of their system on different platforms.
They support all the versions of Windows that Microsoft supports. Their system is a 32-bit binary for windows
which is supposed to run on all supported versions of Windows, 7 in total that in addition are supplied as both
32-bit and 64-bit. They have implemented a special mode of execution-tracing called the "test mode" which trace
is logged and then compared using a series of diff-scripts. They only log partial information about the execution.
They log those parts of the execution that is meaningful to compare. They also filter out information that is difficult
to compare, such as time stamps.

If the diffs of the execution shows a difference, then they know that they should pay attention to the difference,
something that the domain experts have a simple time understanding and handling at the company.

5. RESTRUCTURING TO ENABLE THE APPLICATION OF THE PATTERN

If one has a highly configurable system with an abstraction layer that is only partially homogeneous, one might
consider restructuring into a more homogeneous abstraction layer where all implementations have the same or
almost the same intersection of functionality. This will enable the application of the BOW TIE TESTING PATTERN with
the benefits it provides.

Take our running example in Figure 1. Many companies only use one source control system in house. Thus, a
thing that can be done is to create a homogeneous abstraction layer for the team provider functionality and demand
that there has to be exactly one team provider available. The new context menus would then look something like
Figure 6 instead of Figure 3. We can see that there is only one generic alternative for importing a new project and
only one generic context menu for all source control systems.

The change of the team feature and its sub-features is shown in Figure 5. The sub-features of Team are now
mutually exclusive alternatives, and the CVS options are set to mandatory. Thus, there are five different alternatives
for a source control systems behind a homogeneous abstraction layer.

Such a restructuring will have a dramatic effect on the testability of the software product line. For pair-wise
coverage, only two test suites are required to test 50 different products for pair-wise coverage.

This would not be a refactoring since we have changed the possibilities of configuration, but it might be a valid
trade-off to decrease the number of test suites required for t-wise coverage.

Bow Tie Testing - A Testing Pattern for Product Lines — Page 10

142

T

‘ Team ‘

‘cvs | SWN |
\ CVS_Ovler_SSH \ | Sublipse |

l CVS_Over_SSH2 ‘ l Subclipse_1_4_x ‘ l Subclipse_1_6_x ‘

Fig. 5. A part of the running example has been changed to enable the application of the BOW TIE TESTING PATTERN

Select

Create new projects from an archive file or directory.

Select an import source:

-, File System

=l Preferences

> Source Control System

‘L5, Projects from a source control system

(a) Import a new project (b) Part of the Generic Team Menu

Fig. 6. Restructured team menus from Figure 3 for the Eclipse IDE

6. SIMILAR PATTERNS
6.1 Polymorphic Server Test Pattern

The purpose of this pattern [Binder 1999] is to verify that a collection of classes are compliant to the Liskov
substitution principle. Compliance to this principle basically means that any of the classes can be substituted for
the others and the rest of the system should continue to function in the same way. For example, if one has an
abstract class Window, then the code using an instance of this class continues to function equally well whether it
is an instance of GTKWindow or WindowsWindow. Thus, since the code using an instance of the abstract class
should work equally well for any concrete instance, we can make a single test suite for the abstract class, and rerun
it for every subclass. The test suite should give the same verdict no matter which concrete class is an instance of
the abstract class.

Binder calls the collection of classes implementing an abstract class a polymorphic server hierarchy. It is
polymorphic because that is the basic functionality used for inheritance, it is a server since it provides functionality,
and it may be a hierarchy since more than one level of inheritance is possible.

For the running example, we may apply the pattern to the windowing system by creating a single test suite which
interacts with the windowing system abstraction layer. We can then instantiate this abstraction layer with each
windowing system and rerun the test suite.

Thus, the pattern does not deal with interaction testing, which is what the pattern in this paper does.

6.2 Voting Oracle

The voting oracle [Binder 1999] compares the output of several versions of the same system, and decides that the
one which is likely faulty is the result with the fewest votes. This pattern integrates into our pattern by having the

Bow Tie Testing - A Testing Pattern for Product Lines — Page 11

143

products tested by the same test suite vote for the correct result. The use of a voting oracle with our pattern was
discussed in the description of the pattern above.

6.3 Parallel Test Oracle

The parallel test oracle [Binder 1999] is kind of gold standard oracle. It is similar to the Voting Oracle except that
one knows that one implementation gives the correct results. Our pattern integrates with the parallel test oracle
in cases when one knows that one implementation is correct. If a feature has been verified and one decides to
upgrade the system using more modern technologies, the old version will serve as a gold standard oracle. This is
realistic in a product line setting, since not all customers might be ready to upgrade to the new technology, or one
simply wants to continue to support the old technology.

6.4 Abstract Class Test

Abstract class testing [Binder 1999] deals with the many uses of an abstract class. Using an abstract class as an
abstraction layer is only a special case. Binder does discuss this special case briefly.

Test cases may be developed and run on the superclass method, and then they may be reused for
each subclass. Integration testing should be done at flattened scope for each subclass of the abstract
class.

However, Binder does not elaborate any more on this.

In the running example, some abstract classes might serve as the abstraction layer for the concrete windowing
system implementations. Then, the abstract class test is applicable to those abstract classes. However, when
doing integration testing in the context of a product line, additional guidance is needed in order to know which
integrations to focus on. This is what the BOw TIE TESTING PATTERN provides in addition.

6.5 New Framework Test Pattern

The new framework test pattern [Binder 1999] deals with testing a newly developed framework. A framework is
typically a collection of classes serving as a skeleton implementation of a wide range of application. For example,
a framework for a website might include the basic functionality of navigation and content administration. Since this
is common among many websites, implementing this functionality well once and then reusing it makes sense.

The problem one faces after having developed a new framework is verifying that any accepted usage of the
framework classes works. In this sense, testing a framework is similar to testing a software product line. It is,
however, different in the sense that one does not have a single implementation to work on. The new framework
test pattern suggests making a demo application and then test it to also test the framework.

6.6 Generic Class Test Pattern

Generic classes are used to not have to implement concrete subclasses for every supported type, and to support
an indefinite number of types. Thus, one typically has only one generic class and no concrete implementations.
Thus, the BOW TIE TESTING PATTERN does not apply because it relies on the fact that one has a lot of specific code
that one should not have to redundantly test. Testing a generic class is a different challenge which is addressed by
the generic class test pattern [Binder 1999].

7. CONCLUSION

The BOW TIE TESTING PATTERN shows how mutual exclusive alternatives might be tested using the effort of testing
one implementation while keeping the error detection capabilities of having one test suite for each implementation.
We found several benefits of our approach. We found that:

—Using a homogeneous abstraction layer with many alternatives increases the variability of a product line while it
does not reduce the testability.

Bow Tie Testing - A Testing Pattern for Product Lines — Page 12

144

—The number of products required to test when performing t-wise testing of a product line is reduced in many
cases when there are abstraction layers in the product line.

—Adding new implementations of an abstraction layer in a product line does not increase the number of test suites
required to perform t-wise testing.

—In the cases where one test suite can be used to test multiple products, the repeated executions provide a voting
oracle. An oracle is a program that can determine in certain cases whether the execution of a program is valid or
not.

ACKNOWLEDGMENT

The work presented here has been developed within the VERDE project ITEA 2 - ip8020. VERDE is a project
within the ITEA 2 - Eureka framework.

The authors would like to thank Uwe Zdun for his helpful feedback during the shepherding process of EuroPLoP
2011. The auhtors would also like to thank those who attended the writers’ workshop at EuroPLoP 2011 for their
helpful feedback.

REFERENCES

BINDER, R. V. 1999. Testing object-oriented systems: models, patterns, and tools. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA.

BoscH, J. AND LEE, J., Eds. 2010. Software Product Lines: Going Beyond - 14th International Conference, SPLC 2010, Jeju Island, South
Korea, September 13-17, 2010. Proceedings. Lecture Notes in Computer Science Series, vol. 6287. Springer.

CABRAL, |., COHEN, M. B., AND ROTHERMEL, G. 2010. Improving the testing and testability of software product lines. See Bosch and Lee
[2010], 241-255.

COHEN, M. B., DWYER, M. B., AND SHI, J. 2008. Constructing interaction test suites for highly-configurable systems in the presence of
constraints: A greedy approach. IEEE Transactions on Software Engineering 34, 633—650.

ENGSTROM, E. AND RUNESON, P. 2011. Software product line testing - a systematic mapping study. Information and Software Technology 53, 1,
2-13.

JOHANSEN, M. F., HAUGEN, @., AND FLEUREY, F. 2011. A Survey of Empirics of Strategies for Software Product Line Testing. In Proceedings
of the 2011 IEEE Fourth International Conference on Software Testing, Verification and Validation Workshops, ICSTW ’11, L. O’Conner, Ed.
IEEE Computer Society, Washington, DC, USA, 266—269.

KANG, K. C., COHEN, S. G., HESS, J. A., NOoVvAK, W. E., AND PETERSON, A. S. 1990. Feature-oriented domain analysis (foda) feasibility
study. Tech. rep., Carnegie-Mellon University Software Engineering Institute. November.

KUHN, D. R., WALLACE, D. R., AND GALLO, A. M. 2004. Software fault interactions and implications for software testing. /EEE Transactions
on Software Engineering 30, 6, 418—421.

PoHL, K., BOCKLE, G., AND LINDEN, F. J. v. D. 2005. Software Product Line Engineering: Foundations, Principles and Techniques.
Springer-Verlag New York, Inc., Secaucus, NJ, USA.

REUYS, A., REIS, S., KAMSTIES, E., AND POHL, K. 2006. The scented method for testing software product lines. In Software Product Lines,
T. Kakola and J. C. Duefas, Eds. Springer, Berlin, Heidelberg, 479-520.

RIVIERES, J. AND BEATON, W. 2006. Eclipse Platform Technical Overview.
STRICKER, V., METZGER, A., AND POHL, K. 2010. Avoiding redundant testing in application engineering. See Bosch and Lee [2010], 226—240.

UZUNCAOVA, E., KHURSHID, S., AND BATORY, D. 2010. Incremental test generation for software product lines. Software Engineering, IEEE
Transactions on 36, 3, 309 —322.

Received Feb. 2011; revised Jan. 2012; accepted May 2012

EuroPLoP 2011, July 13 - 17 2011, Irsee, Germany. Copyright © 2012 ACM 978-1-4503-1302-5/11/07. .. $15.00.

Bow Tie Testing - A Testing Pattern for Product Lines — Page 13

145

Chapter 10

Paper 4: Generating Better Partial
Covering Arrays by Modeling Weights on
Sub-Product Lines

147

Generating Better Partial Covering Arrays
by Modeling Weights on Sub-product Lines

Martin Fagereng Johansen!-?, @ystein Haugen®, Franck Fleurey!,
Anne Grete Eldegard?®, and Torbjgrn Syversen?®

! SINTEF ICT, Pb. 124 Blindern, 0314 Oslo, Norway
{Martin.Fagereng.Johansen,Oystein.Haugen,Franck.Fleurey}@sintef.no
2 Institute for Informatics, University of Oslo, Pb. 1080 Blindern, 0316 Oslo, Norway
3 Tomra Systems ASA, Drengsrudhagen 2, 1385 Asker, Norway
{Anne.Grete.Eldegard,Torbjorn.Syversen}@tomra.no

Abstract. Combinatorial interaction testing is an approach for testing
product lines. A set of products to test can be set up from the cover-
ing array generated from a feature model. The products occurring in a
partial covering array, however, may not focus on the important feature
interactions nor resemble any actual product in the market. Knowledge
about which interactions are prevalent in the market can be modeled by
assigning weights to sub-product lines. Such models enable a covering
array generator to select important interactions to cover first for a par-
tial covering array, enable it to construct products resembling those in
the market and enable it to suggest simple changes to an existing set of
products to test for incremental adaption to market changes. We report
experiences from the application of weighted combinatorial interaction
testing for test product selection on an industrial product line, TOMRA’s
Reverse Vending Machines.

Keywords: Product Lines, Software, Hardware, Testing, Combinatorial
Interaction Testing, Evolution.

1 Introduction

A product line is a collection of systems with a considerable amount of software
or hardware components in common [14]. The commonality and differences be-
tween the systems are usually modeled as a feature model [12]. Testing product
lines is a challenge since the number of possible configurations generally grows
exponentially with the number of features in the feature model. Yet, one has
to ensure that any valid product will function correctly. There is no consensus
yet on how to efficiently test product lines, but there are a number of suggested
approaches [7].

A first level of product line testing is testing the software or hardware com-
ponents in isolation to ensure that they function correctly on their own, a tech-
nique seen in industry [9]. Still there may be errors in the interaction between
the features. Combinatorial interaction testing [4] is a promising approach for
performing interaction testing between the features of a product line.

R.B. France et al. (Eds.): MODELS 2012, LNCS 7590, pp. 269-284, 2012.

(© Springer-Verlag Berlin Heidelberg 2012 149

270 M.F. Johansen et al.

Based on this, we decided to try out combinatorial interaction testing on
TOMRA'’s product line of reverse vending machines. Reverse vending machines
handle the return of deposit beverage containers at retail stores such as super-
markets, convenience stores and gas stations. The feature model for the part of
their product line we study has 68 features that potentially combine to 435,808
different configurations.

At TOMRA Verilab they are responsible for testing these machines. They
already have a set of test products and were interested in applying new theory
and techniques from product line testing research to understand the quality of
their current test process and to improve it.

We found that their existing test lab covered a high percentage of the possible
simple feature interactions. But, when we generated a new test lab from scratch
of the same size as the current test lab, we encountered a problem. Even though
the generated machines were valid machines that could be constructed, and even
though they did test more of the simple interactions between features with the
same number of products, they neither resembled any realistic machine that
would be found in the market nor did any subset of products cover the most
prevalent interactions.

A solution to these problems was to partition the machines in the market into
sub-product lines, partially configured feature models; and to assign weights on
them reflecting the number of products that are instances of this particular sub-
product line. Modeling weights and sub-product lines proved to be a simple and
intuitive way to capture relevant domain-knowledge in a feature model. It is
close to the way the domain experts reason about the market and what is most
important to be verified.

By generating covering arrays by prioritizing interactions according to their
weight, we generated products that resemble the products in the market and that
covered as many simple interactions as possible. This caused fewer interactions to
be covered, but those interactions that were covered were more relevant according
to the market situation.

The weighted sub-product line models also gave us an unexpected benefit. It
enabled us to set up an evolution process for the test lab to incrementally adapt
it to a continually changing market situation.

In addition to the application to TOMRA’s product line, we briefly show how
the technique can be used on the Eclipse IDE! software product line.

The generation, analysis and evolution based on weighted sub-product line
models have been implemented in a fully functional tool freely available as open
source on the paper’s resource website?. The generation of covering arrays in
the tool is done using the ICPL algorithm, an algorithm we have developed to
generate covering arrays from large feature models [10,11].

! The Eclipse IDE is provided by the Eclipse Foundation and is independent from the
TOMRA case.

2 http://heim.ifi.uio.no/martifag/models2012/. Two example models, covering
arrays and weighted sub-product line models are also available on this website.

150

Weighted Combinatorial Interaction Testing 271

This paper is structured as follows. In Section 2 we cover relevant background
information and related work. In Section 3 we introduce models of weighted
sub-product lines that enable covering array generation algorithms to select and
evolve collections of products to test. In Section 4 we present the models and ex-
periences from applying the techniques to an industrial product line at TOMRA
and in Section 5 briefly describe the applicability to testing Eclipse IDEs. The
paper ends with the conclusion, Section 6.

2 Background and Related Work

2.1 Product Lines

As stated in the introduction, a product line is a collection of systems with a
considerable amount of hardware or software in common. The primary motiva-
tion for structuring one’s systems as a product line is to allow customers to have
a system tailored for their purpose and needs, while still avoiding redundancy of
hardware or code. It is not uncommon for customers to have conflicting require-
ments. In that case, it is not even possible to ship one system for all customers.
In the case of hardware, it would be uneconomical to ship unused components.

The Eclipse IDE products [2] can be seen as a software product line. Today, the
Eclipse project lists 12 products on their download page3. The configurations of
these products are shown in Table 1a*. These products share many components,
but all components are not offered together as one single product. The reason
is that the download would be unnecessary large, since, for example, a C++
systems programmer usually does not need to use the PHP-related features. It
would also bloat the system by giving the user many unnecessary alternatives
when, for example, creating a new project. Some products contain early devel-
oper releases of some components, such as Eclipse for modeling. Including these
would compromise the stability for the other products. Thus, it should be clear
why offering specialized products for different use cases is good.

One way to model the commonalities and differences in a product line is using
a feature model [12]. A feature model sets up the commonalities and differences
of a product line in a tree such that configuring the product line proceeds from
the root of the tree. Please refer to an example of a feature model for a subset
of Eclipse in Figure 1.

Proceeding from the root, configuring the product line consists of making a
decision for each node in the tree. Each node represents a feature of the product
line. The nature of this decision is modeled as a decoration on the edges going
from a node to another. For example, in Figure 1, a filled circle means that the
feature is mandatory, and an empty circle means that it is optional. A filled semi-
circle on the outgoing edges means that at least one of the features underneath
must be selected. An empty semi-circle means that one and only one must be

3 http://eclipse.org/downloads/ as of 2012-03-09.
* The original version of this table was found at
http://www.eclipse.org/downloads/compare.php, 2012-03-28.

151

272 M.F. Johansen et al.

EclipselDE
RCP_Platform
O O O O O O O O O
T CVSs Tools Mylyn PTP | | Jubula | | RAP | | EGit | | RSE | | EclipseLink | | WindowBuilder

JDT EMF GEF CD
Maven Datatools l WebTools ‘ LinuxTools ‘ l JavaEETools ‘ l XMLTools ‘ l MDT ‘ GMF = GEF

Maven = EMF
BIRT = GEF A JDT A PDE

Fig. 1. Feature model for a significant part of the Eclipse IDE product line supported
by the Eclipse Project

selected. In addition, constraints not effectively modeled on the tree are written
underneath the model as propositional constraints; for example, when GMF is
selected, it implies that GEF must also be selected.

The parts that can be different in the products of a product line are usually
called its variability. One particular product in the product line is called a variant
and is specified by a configuration of the feature model. A configuration consists
of specifying whether each feature is included or not.

2.2 Product Line Testing

Testing a product line poses a number of new challenges compared to testing
single systems. It has to be ensured that each possible configuration of the prod-
uct line functions correctly. One way to verify a product line is through testing,
but testing is done on a running system. The product line is simply a collec-
tion of many products. The number of possible configurations generally grows
exponentially with the number of features in the feature model. For the feature
model in Figure 1, the number of possible configurations is 1,900,544, and this
is a relatively simple product line.

There is no single recommended approach available today for testing product
lines efficiently [7], but there are many suggestions. Some of the more promising
suggestions are combinatorial interaction testing [4], discussed below; reusable
component testing, which we have seen in industry [9], but which does not test
for interaction faults in the product line; a technique called ScenTED, where
the idea is to express the commonalities and differences on the UML model of
the product line and then derive concrete test cases by analyzing it [15]; and
incremental testing, where the idea is to automatically adapt a test case from
one product to the next using the specification of similarities and differences
between the products [16].

2.3 Combinatorial Interaction Testing for Product Lines

Combinatorial interaction testing [4] is one of the most promising approaches.
The benefits of this approach is that it deals directly with the feature model to

152

Weighted Combinatorial Interaction Testing 273

derive a small subset of products which can then be tested using single system
testing techniques, of which there are many good ones [3]. The idea is to select
a small subset of products where the interaction faults are most likely to occur.
For example, we can select the subset of all possible products where each pair
of features is present. This includes the cases where both features are present;
when one is present and when none of the two are present. Table 1b shows the
12 products that must be tested to ensure that every interaction between two
features in the running example functions correctly, a 2-wise covering array. Each
row represents one feature and every column one product. "X’ means that the
feature is included for the product, -> means that the feature is not included.
Some features are included for every product because they are mandatory, and

some pairs are not covered since they are invalid according to the feature model.

Table 1. Eclipse IDE Products, Instances of the Feature Model in Figure 1

(a) Eclipse IDE Products (b) Complete 2-wise Covering Array
Feature\Product 123456 789101112 Feature\Product 123456789101112
EclipselDE XXX XXXXXXX XX EclipseIDE XXX XXXXXXX X X
RCP Platform XXXXXXXXXX X X RCP Platform XXXXXXXXXX X X
CVS AXXXXXXXXX X CVS XX--X--X-X- -
EGit - - XXXX - - - - - - EGit XXX - - -XX- - - -
EMF XX---XX--- - - EMF XXX-X--XX-XX
GEF XX---XX-- - - - GEF XX--X-XXX- X -
JDT XX--XXX-X- -X JDT X-XXX--XX- - -
Mylyn XXXXXXXXXX X - Mylyn SXXX- - X - - -
Tools XXXXXXXX- - X - Tools XXXXXXXXX - - -
‘WebTools -X----X---X - WebTools X-XX--X-X- - -
LinuxTools - - XX---X- - - - LinuxTools X-X--XX-X- - -
JavaEETools - X- - - - X-- - - - JavaEETools X--X-X--X- - -
XMLTools XX--X-XX- - - - XMLTools XX -X-X-X- - -
RSE - XXX--XX- - - - RSE SXX--X-X-X - -
EclipseLink -X----X--X - - EclipseLink -XX--X-XX- - -
PDE X - -XXX-X- - X PDE X--XX--XX- - -
Datatools D, D Datatools XX--X--XX- -X
CDT - - XX---X- - - - CcDT X-X-XX---- - -
BIRT - ----- X--=- - - BIRT X---X--XX- - -
GMF - - - - - X--- - - - GMF XX--X---X-X-
TP oo - X- - - - PTP - - X XXX - - - - -
MpT - - - - - X---- - - MDT X-XX--XX-- - -
Scout 0 - - - - - - - - X- - - Scout - - - XX - XX - - -
Jubula = - - - - - - - - X - - Jubula - - XX-X-XX - - -
RAP D RAP X-X--X-X-- - -
WindowBuilder X - - - - - - - - - - - WindowBuilder -XX-X- -XXX - -
Maven Xemmm e e e - - - Maven X-X-X---X- - -

2-wise covering arrays are a special case of t-wise covering arrays where t = 2.
1-wise coverage means that every feature is at least included and excluded in
at least one product. 3-wise coverage means that every combination of three
features are present, etc. For our running example, 2, 12 and 37 products are
sufficient to achieve 1, 2 and 3-wise coverage, respectively.

An important motivation for combinatorial interaction testing is a paper by
Kuhn et al. 2004 [13]. They indicated empirically that most bugs are found for
6-wise coverage, and that for 1-wise one is likely to find on average around 50%,
for 2-wise on average around 70%, and for 3-wise around 95%, etc. Kuhn et al.

153

274 M.F. Johansen et al.

2004 result, however is not about combinations of features, but about combina-
tions of program input. A recent study by Garvin and Cohen 2011 [8] checked
whether Kuhn et al. 2004’s result also holds for feature interaction faults. They
investigated 250 faults of two real-world, open source systems. Of these faults
28 were found to be configuration dependent and three to be true interaction
faults. In addition, they conclude that exercising feature interactions traverses
more of the product line’s behavior. This indicates that Kuhn et al. 2004’s result
is also applicable for feature interaction faults.

There are three main stages in the application of combinatorial interaction
testing to a product line. First, the feature model of the system must be made.
Second, the t-wise subset of products must be generated. We have developed
an algorithm that can generate such arrays from large features models [11].
These products must then be generated or physically built. Last, a single system
testing technique must be selected and applied to each product in this covering
array.

3 Weighted Combinatorial Interaction Testing

As explained earlier, in order to successfully apply combinatorial interaction
testing at TOMRA, we had to extend the technique by developing and us-
ing weighted sub-product line models. In this section, we describe the mod-
els and how they are used on a simple example, before discussing the more
complex details and evaluations for the application at TOMRA in the next
section.

Ordinary Combinatorial Interaction Testing. Figure 2a shows a simple
feature model with 6 features. When applying ordinary combinatorial interac-
tion testing, we would, for example, generate a 2-wise covering array (as in
Table 2b), build the products and test them individually. That way, we know
that all interactions between pairs of features have been tested.

Table 2. A Simple Example

(a) Feature (b) Complete 2-wise (c) Weighted
Model covering array Sub-product
lines
R 1 23456 1 2
#Weight 100 10
R XXXXXX R X X
O O 0 A XXXX - - A -7
Al 8] B X -X-X B X X
C - X - XX - C 7 X
O, O D X - -X - - D - 7
E E E XX - - - - E -7

154

Weighted Combinatorial Interaction Testing 275

Initial Problems. At this stage of the application of combinatorial interaction
testing at TOMRA we faced a few problems:

— There were no ways to select a subset of the products to test that included
the most important interactions. One could of course select a subset that
covered as many interactions as possible, but it might not include some
important interactions.

— The covering array generation algorithm generates a different result each
time it is run. Since there are many equally good products, why not select
the ones that look like some of the larger classes of sold products?

A Solution. These experiences revealed to us that an assumption of ordinary
combinatorial interaction testing, that all interactions are equal, is not entirely
the case in practice.

For TOMRA, there were certain market segments where the products are
similar. It is important for TOMRA that a product containing the commonalities
of these segments are tested. Thus, we decided: Let us model the products in
each market segment as a sub-product line, and assign a weight to it according
to how many products of that kind are in the market.

This will enable us to assign weights to each interaction in the sub-product
line. These weights can then be used by a covering array generator to select the
interactions with the most weight to cover first. This would cause the results to
be similar each time the covering array algorithm is run and the first products
produced would contain the most important interactions.

Weighted Sub-product Lines. For our simple example, there are two ma-
jor market segments, modeled in Table 2c. These two sub-product lines are as
follows: The first has R and B included and A, D and E excluded. The feature
C is optional within this segment. The second segment has features R, B and
C included while A, D and E are optional within this segment. Now, in this
second example, the limitations imposed on the products by the feature model
in Figure 2a still apply, of course. So, even though A, D and E are marked with
a question mark, the products with A excluded also has D and E excluded. The
first segment have 100 instances in the market while the second segment has
only 10.

Now, what about legal products that are not in any market segment? For
this example, a product with R included and B excluded is not found in the
market. As we experienced at TORMA, the reason that they are not found is
that they do not make sense even though they are structurally valid. This is
valuable domain knowledge, and is of great value to a covering array generator:
It enables it not to focus on the interactions that are of no practical importance.

Algorithms. An example should clarify how the covering array generation al-
gorithm can use the weighted sub-product line models. This example uses 1-wise
covering arrays since an example with 2-wise covering arrays would fill up several

155

276 M.F. Johansen et al.

pages due to the combinatorial explosion of interactions. This is not a problem
for modern computers to deal with however.

We will use the terminology from a previous paper of ours [11]: An assignment
is a pair with a feature name and a boolean. A t-set is a set of t assignments.
A configuration is a set of assignments in which all features of the product
line are given an assignment. The wuniverse to cover is the set of all valid t-
sets, U;. Thus, a t-wise covering array is a set of configurations, C%, such that
Ve € Ug,dc € Cy : e C c. A t-set can be written as for example {(F1, X), (F2,)},
a 2-set with F'1 included and F'2 excluded.

For our simple example, the following 11 t-sets need to be in a product
to achieve 1-wise coverage: {{(R,X)},{(4,X)}, {(4,)}, {(B,X)},{(B,-)},{(C, X)},
{(C,)L {(D, X))}, {(D,)}, {(E, X)}, {(E, —)}}. Note that the assignment with R ex-
cluded is not present since in feature modeling the root must always be included.

Now, we can assign weights to each t-set. In Table 2c, whenever a t-set is
present in a sub-product line, the weight is added to the t-set. If there is a
question-mark, half the weight is given to each assignment. For example (4, x)
gets b because it is not present in the first sub-product line and only as an option
in the second. One t-set is not present in any sub-product line and therefore
gets the weight zero: { ({(R, X)},110), ({(A, X)},5), ({(A, =)}, 105), ({(B, X)}, 110), {(B, —)},
0), ({(C, X)}, 60), ({(C, —)},50), {(D, X)},5), {(D, —)},105), {(E£, X)},5), {(E,—)},105)}.

These t-sets can now be ordered according to their weights: { ({(R, X)}, 110),
({(B,X)},110), ({(A,—)},105), ({(E,—)},105), ({(D,—)},105), ({(C,X)},60), ({(C,—)},50),
({(A, X)},5), {(D, X)},5), {(E, X)},5), {(B, —)}, 0)}.

Now, the circumstances warrants two kinds of coverages. The ordinary type
of coverage is t-set coverage. The goal of combinatorial interaction testing is to
cover as many simple interactions as possible, and ultimately a t-set coverage of
100%, that is, cover all t-sets. Since we have introduced weights for each t-set,
talking about weight coverage makes sense. The goal of weight coverage is then
to cover the most weight possible, and ultimately cover all the t-sets with weight,
that is, achieve 100% weight coverage.

Just as t-set coverage is found by taking the number of covered t-sets and
dividing it by the total number of valid t-sets, |U;|, similarly weight coverage is
found by taking the covered weight divided by the total weight.

The total weight of our example is the sum of all the weights of all the t-sets:
660. Now, if we were to generate a single product to test from the weighted t-sets,
we would get the following: {{(R,X)},{(A,)}, {(B, X)}, {(C, X)},{(D, =)}, {(E,—)}}.
The weight covered by this product is the sum of all weights of the covered
t-sets: 595. Thus, the weight coverage of this single product is 595/660 =~ 90%.
This number can be contrasted with the t-set coverage of this product which
is 6/11 ~ 55%. The high weight coverage indicates to us that we have most of
the important t-sets (given the current market situation) are in the product.
Any valid product would, however, give the same t-set coverage, but only that
product would give such a high weight coverage.

Note that 100% weight coverage can mean that we have less than 100% t-
set coverage since some t-sets can have zero weight. To ensure that 100% weight

156

Weighted Combinatorial Interaction Testing 277

coverage means 100% t-set coverage, include a sub-product line with all question
marks and a non-zero weight.

Evolution of Test Products. A goal of testing is to gain confidence in the
products that are sold to or used by the customers. Weights on sub-product lines
can be set up to reflect the market situation, but could also include expected
sales. When the market situation or the expectations change, the weights and
the sub-product lines can change. This does not mean that the test lab or the
feature model is changed. It will, however, mean that the weight coverage of the
products that are currently being tested changes.

A simple algorithm can suggest simple changes to a set of test products. By
calculating the coverage of the current test products, and then the new coverage
given 1, 2 or 3 (or even more) changes of it, a list of possible changes can
be made®. If the best changes are applied to the lab incrementally, the test
products can evolve over time to converge on the current market situation, even
if it changes during the evolution.

A special case of this is the introduction of a new feature in the feature model.
The expected sales of this new feature can be added to the weighted sub-product
line models. Including it for at least one of the products in the set of test products
will probably be the best way to increase weight coverage. Thus, this decision is
automated by our approach.

Sub-Product Lines, Related Work. Czarnecki et al. 2004 [5] introduced the
idea of staged configuration. The stages are the production of a new sub-product
line from a previous one. The difference between their work and ours is that we
apply sub-product lines to modeling the market situation for use in testing, while
they use it during product line development.

Their ideas are further developed in Czarnecki et al. 2005 [6]. Our view is
similar to theirs in that the sub-product lines are specializations of the complete
feature model to certain market segments. It is on the basis of these specializa-
tions that domain experts do their daily work.

Batory 2005 [1] integrates the idea of staged configurations with the formaliza-
tion of feature models as propositional constraints. He formalizes feature models
as propositional formulas. In his work, a sub-product line is a propositional
formula where some variables, representing features, set to 'true’ for included,
some set to ’false’ for excluded, and the unset features set to 'unknown’. The
‘unknown’ classification is the same as the questions-marks in our sub-product
line models.

4 Industrial Application: TOMRA

In this section, we report from an industrial application of our technique at
TOMRA Verilab.

® An implementation of this algorithm is available on the paper’s resource website. It
supports searching for 1-3 changes for improving 1-3 wise coverage.

157

278 M.F. Johansen et al.

About TOMRA Verilab. TOMRA Verilab is the part of TOMRA that is
responsible for testing TOMRA'’s reverse vending machines (RVMs). Reverse
vending machines handle the return of deposit beverage containers at retail
stores such as supermarkets, convenience stores and gas stations. In Norway,
customers are required by law to pay an amount for each container they buy
which is given back to them if they decide to return the container.

RVMs. The RVMs are delivered all over the world and the market is expanding.
However, individual market requirements and the needs of TOMRA’s customers
within the different markets can very significantly. TOMRA’s reverse vending
portfolio therefore offers a high degree of flexibility in terms of how a specific
installation is configured.

Figure 2 shows a part of the feature model for TOMRA RVMs. The feature
model has 68 features, and a huge number of possible configurations (435,808,
to be exact). Variation can include such things as the quality of the display
used (e.g. black and white, color, touch-screen interface), the type of storing
and sorting facilities the system has, as well as different container recognition
technologies utilized for identifying container security marks, material and other
characteristics.

Test Lab. In order to test the RVMs, TOMRA Verilab has set up a test lab
of machines configured by hand to ensure the quality of the machines in the
market. Parts of these product configurations are shown in Table 3. These prod-
ucts are both automatically and manually tested. The software is partly tested
automatically by installing and running test suites on the machines. The manual
tests are run by, for example, inserting bottles of various kinds in various ways,
orders and magnitudes.

Sub-Product Lines and Weights. As discussed earlier, the results produced
by ordinary covering array generation was not suited for TOMRA for various
reasons. To solve these, we modelled the weighted sub-product lines as partly
shown in Table 4.

Existing Coverages. The first experiment was to measure the t-set and weight
coverage of the existing test lab, shown in part in Table 3. Recall that coverage is
measured by taking the covered valid t-sets and then dividing either their number
or their weight by the total number or t-sets or the total weight, respectively.

Figure 3a shows the 1-3-wise, t-set and weight coverage for the existing test
lab. The weight coverage is consistently higher for the weight coverage than for
the t-set coverage. This is consistent with the fact that the developers paid at-
tention to the market situation when designing the test lab manually. It also
suggests that weighted sub-product line models are a guide to test product se-
lection for TOMRA Verilab.

158

279

SouIyoR[\ SUIPUSA 9SI9AY JO oUIT 3oNPOLJ S, VHINO.L JO [opowW 2Injesq a3 jo ed g *Stq

_ doigyos VO _N_\m_w_u_ _n_\mw_n_ _ ensye o OOV _w.:wxwwn_\muOd\ ensya YOIl 9|buis v doigyos- < 9ILN yono| Ae|dsiq A JojoQABIdSIO < ENAY
JojoDAedsig < 91LN ZSHO < NundjeId v ZNAY
uoneujw.a | JojopAeldsia « GILN 10j00AedsIq < ZINAY
Makeldsia < €ILN ZS¥O < WunseId v LINAY
JojopAedsig < zILN Mmaheidsia < LINAY
| vow [ubeasiybnd [Wniybrd| hubensyeT uniyen Makeidsid < LLLW B1BWED060T & BISWIEDIO0D oreosaieI0 €SHO [1010912q10100 €SMD

< €SHD < NundjeId vV FINAY opooleg < JopeayeNAINoeg <

_Qo_n_com_ 7 vd1l auizAeidsia < YNAY loleogeresn sjeIgwe) [esawenobo [essweniop) Tumw_o _w_mowﬁm._odmmo_ _houomﬂmo_o_ooumwxo
BlRIDWED < JUNBIRID V ENAY

pioguasiey
doiayosGILIN

leng pibuis SILW [P1LLW] [e1L VLW [woonpoeg [SWAY [pAd] [emAY ZINAY [LWAY]

JouIgeDamo] soedui-adAy auiyoey T:mEEﬁm&ﬂmchmE _ Lioluld _Nm_\,_w_ _wm_\,_w _zo:ob»m_nw_o_ _‘_o_oo\hm_am_n_ _ Makeidsia _w:__w>m_nm_o

— /H\. TN/ T 2 —

E puzjjuoI4 19yulg| PepeayepAiunoss [spng fepooseg [Aeidsidl [lerepy [ereos
S il

dnoib6jonpoid

s|lejop” woouioeg

nunaei

Weighted Combinatorial Interaction Testing

Hunsmog

NAY

159

280 M.F. Johansen et al.

Table 3. Part of TOMRA’s Actual Test Lab

Feature\Product 123456789101112

RVM XXXXXXXXXX XX
CrateUnit X-X---XXX--X
BottleUnit XXXXXXXXXX XX
Display XXXXXXXXXX XX
Display2line D
DisplayBW XX-XX-=---- - -
DisplayColor - - - - - XXXXX X -
DisplayTouch - -------- - - X
Scale - XXXXXXXXX XX
Metal XX -XXXXXXX XX
Barcode XX - XXXXXXX XX
BMS R T
SecurityMarkReader - X - X - -X-- - XX
SMR1 . R
SMR2 ---X--X---XX
Printer XXXXXXXXXX XX
Printerl XXXXXXXXXX XX
Product group XXXXXXXXXX XX
FrontEnd XXX---XXX- - X
Backroom XXX---XXX- - X
Backroom details XXX---XXX- -X
op - ----- X- - - -
LPA D R
SoftDrop B
RaiserBord X-X----XX- - -

Generated Coverages. The second experiment was to generate a partial cov-
ering array from scratch using both t-set and weight coverage and compare them
to each other. The results are shown in Figure 3b. We can see that for 1-3-wise
covering arrays, the weighted covering arrays are consistently smaller than t-set-
based covering arrays. This suggests that either it would have been beneficial to
used weighted covering array generation from the start, or that the current test
lab is outdated with respect to the current market situation.

Suggesting Improvements. The third experiment was to find small modifi-
cations that can be done on the existing test lab at TOMRA to increase the
weight coverage. Some such suggestions are shown in Table 5.

The search for improvements is done by flipping a set of assignments and,
if the new configuration is valid, recalculating the new weight coverage. If the
coverage is better than the original one, the changes and the new coverage are
recorded.

In Table 5, we have recorded some suggestions for improving the 2-wise weight
coverage of the existing test lab. The original 2-wise weight coverage was 95.8%
(Table 3). We can achieve an increase of 0.2 pp by excluding feature Metal for
product 11, an increase of 0.7 pp by including feature SoftDrop and excluding
feature Raiser Bord for product 1. Finally, we achieve an increase of 0.8 pp by
excluding Metal, including SoftDrop and excluding Raiser Bord for product 1.

160

Weighted Combinatorial Interaction Testing 281

Table 4. Part of TOMRA’s Sub-Product Lines and Their Weights

Feature\Product 1 2 3 4 56789 101112131415 16 17 18 19
#Weight 4784781140500503333257512058 1 818152510015001225125
RVM X X XXXXXXXXXXX X X X X
CrateUnit - ? X-X-X?27?77?7-X- - - - -

XXXXX X XXXX
XXXXX X XXXX
- - XX

BottleUnit
Display
Display2line
DisplayBW
DisplayColor
DisplayTouch
Scale

Metal

Barcode

BMS
SecurityMarkReader
SMR1

SMR2

Printer
Printerl
Product group
FrontEnd

ol
MK KR
XK
KX XX
ol
ol
ol
ol
ol

~
B
~
~ 0 !
B
~) |

~))
~))
P
Ko

BRI ISV
R A K 0 0 0 0 0 0 Y

O) 0 1 -
~N N e |

R

B
NN N))
NN)) N
D)

N N e |

N N

N N e |

[R, P, S T

>< N !

o

|><><><-\3-\')~\3|
R S IR
|><:><><.\-,.\3.\1|
XX X

Backroom
Backroom details
oP

LPA

Do R0 o o
Do R R e st
MR R s s
DM R0 o o
DM R e e
o M B o o
o T B o o
SR R o o
SR R e o s
B 0 o o
DR R
DR R
s M s s
s R

b

SoftDrop 7 - - -

~
~
~
~)
1
1
1
-~
~)
1
~)
~
~
1

RaiserBord

~

~

1

1

1

~)

~)
-~

~)

1

1

1

~

~

1

1

1

1

1

Generating the suggestions on our machine® took 49s, 141s and 1,090s
for an improvement in 2-wise covering of 1, 2 and 3 suggestions of changes
respectively.

The next set of runs (4-6) is on an improved version of the original test lab.
We chose to apply suggestion 1, to exclude feature Metal for product 11, and
got a new test lab of 2-wise weight coverage of 96.0%. The improvements can be
read in the same way as the previous set of suggestions.

The next set of runs (7-9) is on another improved version of the original
test lab. We chose to apply suggestion 2 to the original lab, to include feature
SoftDrop and exclude feature RaiserBord for product 1, and got a new test
lab of 2-wise weight coverage of 96.5%.

Finally, we applied suggestions 1 and 2 to the original test lab to get a coverage
of 96.3%. This produces suggestions 10-12.

The best coverage was achieved by changing four features by applying sug-
gestions 2 and 9 to get a new weight coverage of 97.2%, up 1.4pp from 95.8%.

6 Tts specifications: Intel Q9300 CPU @2.53GHz and 8 GiB, 400MHz RAM. Each
execution ran in parallel in 4 threads, as the computer had 4 logical processors.

161

282 M.F. Johansen et al.

60

100 % 50

80% - 40

60% | Otset 30 — Ot-set
40% - m weight 20 W weight
20% - 10

0% A 1) 3 0 |—].L I 2. -3
(a) t-set and Weight Coverage of (b) Size of Labs with 95% t-set
Original Lab and Weight Coverage

Fig. 3. Results of Two Experiments

Table 5. Simple changes to TOMRA's test lab, Table 3, that produce higher coverage
of the product line, Figure 2, based on the current market situation, Table 4

Change Suggestion New Coverage Product Feature 1 Set Feature 2 Set Feature 3 Set
Starting from the lab machines with coverage 95.8%

1 96.0% 11 Metal -

2 96.5% 1 SoftDrop X RaiserBord -

3 96.6% 1 Metal - SoftDrop X RaiserBord -
Starting from lab machines with suggestion 1, with coverage 96.0%

4 96.3% 10 Barcode -

5 96.7% 1 SoftDrop X RaiserBord -

6 96.9% 1 Barcode - SoftDrop X RaiserBord -
Starting from lab machines with suggestion 2, with coverage 96.5%

7 96.7% 11 Metal -

8 97.0% 11 Metal - Scale -

9 97.2% 10 Metal - Scale - Barcode -
Starting from lab machines with suggestion 1 and 4, with coverage 96.3%

10 96.5% 11 Scale -

11 97.0% 1 SoftDrop X RaiserBord -

12 96.5% 3 Scale - SoftDrop X RaiserBord -

5 Applicability to the Eclipse IDEs

As an indication of the generality of our approach, we did an experiment to see
if it also made sense for the product line of Eclipse IDEs. The Eclipse IDE can
be seen as a product line; it was introduced in Section 2. The actual products
offered on the Eclipse website was shown in Table 1a.

One source of information about what the users of the Eclipse IDE have is
the download statistics reported on the Eclipse project’s download pages’. These
can be used as weights®. The weights can be assigned to the product configura-
tions themselves, which were previously shown in Table 1a. Table 6 shows the
downloads as weights linked to each of the Eclipse products in Table 1a. In this
table we can clearly see that some products are more downloaded than others.

" http://eclipse.org/downloads/ as of 2012-03-09.

8 A better source of weights and sub-product lines is the data aquired by the Eclipse
Usage Data Collector (UDC) that ”[...] collects information about how individuals
are using the Eclipse platform,” available online at eclipse.org/org/usagedata/.

162

Weighted Combinatorial Interaction Testing 283

Table 6. Eclipse IDE Product Configurations and Their Downloads as of 2012-03-09

Product Name Weight Product Name Weight
1 Java 282,220 7 Reporting 33,813
2 JavaEE 856,493 8 Parallel 10,441
3 C/CH++ 58,720 9 Scout 1,130
4 C/C++ Linux 58,720 10 Testers 8,953
5 RCP/RAP 16,610 11 JavaScript 35,750
6 Modeling 22,060 12 Classic 651,616

By generating a 2-wise covering array using the feature model in Figure 1 with
the weights from Table 6 on the product configurations in Table 1a, we found
that just 4 products give more that 95% weight coverage. This clearly shows
that our approach is most likely applicable outside the scope of the TOMRA
industrial case.

6 Conclusion

In this paper we showed how an additional type of model was needed in order
to effectively apply combinatorial interaction testing to an industrial product
line. The new model captures relevant domain knowledge in a form that is close
to the way domain experts reason about their domain and enables additional
benefits to be derived from combinatorial interaction testing:

— Cover the interactions found in the market or planned to be in future prod-
ucts first.

— Generate products that both cover many simple interactions and resemble
products found in the market.

— Incrementally evolve the test products for the continually changing market
situation.

— Covering array generation is more deterministic.

We described our experiences of applying this to a product line of industrial size
and complexity, the TOMRA RVMs.

The algorithms that implement these features in addition to the ordinary
combinatorial interaction testing features are available on the paper’s resource
website as free and open source software.

Acknowledgments. The work presented here has been developed within the
VERDE project ITEA 2 - ip8020. VERDE is a project within the ITEA 2 -
Eureka framework.

References
1. Batory, D.: Feature Models, Grammars, and Propositional Formulas. In: Obbink,

H., Pohl, K. (eds.) SPLC 2005. LNCS, vol. 3714, pp. 7-20. Springer, Heidelberg
(2005)

163

284

2.

3.

4.

10.

11.

12.

13.

14.

15.

16.

164

M.F. Johansen et al.

Beaton, W., Rivieres, J.: Eclipse platform technical overview. Tech. rep., The
Eclipse Foundation (2006)

Binder, R.V.: Testing object-oriented systems: models, patterns, and tools.
Addison-Wesley Longman Publishing Co., Inc., Boston (1999)

Cohen, M.B., Dwyer, M.B., Shi, J.: Constructing interaction test suites for highly-
configurable systems in the presence of constraints: A greedy approach. IEEE
Transactions on Software Engineering 34, 633-650 (2008)

Czarnecki, K., Helsen, S., Eisenecker, U.: Staged Configuration Using Feature Mod-
els. In: Nord, R.L. (ed.) SPLC 2004. LNCS, vol. 3154, pp. 266—283. Springer, Hei-
delberg (2004)

Czarnecki, K., Helsen, S., Eisenecker, U.W.: Staged configuration through special-
ization and multilevel configuration of feature models. Software Process: Improve-
ment and Practice 10(2), 143-169 (2005)

Engstrom, E., Runeson, P.: Software product line testing - A systematic mapping
study. Information and Software Technology 53(1), 2-13 (2011)

Garvin, B., Cohen, M.: Feature interaction faults revisited: An exploratory study.
In: TEEE 22nd International Symposium on Software Reliability Engineering (IS-
SRE), pp. 90-99 (29 2011-December 2 2011)

Johansen, M.F., Haugen, ., Fleurey, F.: A Survey of Empirics of Strategies for
Software Product Line Testing. In: O’Conner, L. (ed.) Proceedings of the 2011
IEEE Fourth International Conference on Software Testing, Verification and Vali-
dation Workshops, ICSTW 2011, pp. 266-269. IEEE Computer Society, Washing-
ton, DC (2011)

Johansen, M.F., Haugen, ., Fleurey, F.: Properties of Realistic Feature Models
Make Combinatorial Testing of Product Lines Feasible. In: Whittle, J., Clark,
T., Kithne, T. (eds.) MODELS 2011. LNCS, vol. 6981, pp. 638-652. Springer,
Heidelberg (2011)

Johansen, M.F., Haugen, ., Fleurey, F.: An Algorithm for Generating t-wise Cov-
ering Arrays from Large Feature Models. In: Alves, V., Santos, A. (eds.) Proceed-
ings of the 16th International Software Product Line Conference (SPLC 2012),
ACM (2012)

Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S.: Feature-oriented
domain analysis (foda) feasibility study. Tech. rep., Carnegie-Mellon University
Software Engineering Institute (November 1990)

Kuhn, D.R., Wallace, D.R., Gallo, A.M.: Software fault interactions and impli-
cations for software testing. IEEE Transactions on Software Engineering 30(6),
418-421 (2004)

Pohl, K., Bockle, G., van der Linden, F.J.: Software Product Line Engineering:
Foundations, Principles and Techniques. Springer-Verlag New York, Inc., Secaucus
(2005)

Reuys, A., Reis, S., Kamsties, E., Pohl, K.: The scented method for testing software
product lines. In: Kékola, T., Duenas, J.C. (eds.) Software Product Lines, pp. 479—
520. Springer, Heidelberg (2006), doi:10.1007/978-3-540-33253-4 13

Uzuncaova, E., Khurshid, S., Batory, D.: Incremental test generation for software
product lines. IEEE Transactions on Software Engineering 36(3), 309-322 (2010)

Chapter 11

Paper 5: A Technique for Agile and
Automatic Interaction Testing for Product

Lines

165

A Technique for Agile and Automatic
Interaction Testing for Product Lines

Martin Fagereng Johansen!-?, @ystein Haugen®, Franck Fleurey!,
Erik Carlson?, Jan Endresen®, and Tormod Wien?

! SINTEF ICT, Pb. 124 Blindern, 0314 Oslo, Norway
{Martin.Fagereng.Johansen,Oystein.Haugen,Franck.Fleurey}@sintef.no
2 Institute for Informatics, University of Oslo, Pb. 1080 Blindern, 0316 Oslo, Norway
3 ABB, Bergerveien 12, 1375 Billingstad, Norway
{erik.carlson, jan.endresen,tormod.wien}@no.abb.com

Abstract. Product line developers must ensure that existing and new
features work in all products. Adding to or changing a product line might
break some of its features. In this paper, we present a technique for au-
tomatic and agile interaction testing for product lines. The technique
enables developers to know if features work together with other features
in a product line, and it blends well into a process of continuous in-
tegration. The technique is evaluated with two industrial applications,
testing a product line of safety devices and the Eclipse IDEs. The first
case shows how existing test suites are applied to the products of a 2-
wise covering array to identify two interaction faults. The second case
shows how over 400,000 test executions are performed on the products
of a 2-wise covering array using over 40,000 existing automatic tests to
identify potential interactions faults.

Keywords: Product Lines, Testing, Agile, Continuous Integration,
Automatic, Combinatorial Interaction Testing.

1 Introduction

A product line is a collection of products with a considerable amount of hardware
or code in common. The commonality and differences between the products are
usually modeled as a feature model. A product of a product line is given by a
configuration of the feature model, constructed by specifying whether features
are including or not. Testing product lines is a challenge since the number of
possible products grows exponentially with the number of choices in the feature
model. Yet, it is desirable to ensure that the valid products function correctly.

One approach for testing product lines is combinatorial interaction testing [1].
Combinatorial interaction testing is to first construct a small set of products,
called a covering array, in which interaction faults are most likely to show up
and then to test these products normally. We have previously advanced this ap-
proach by showing that generating covering arrays from realistic features models
is tractable [2] and by providing an algorithm that allows generating covering
arrays for product lines of the size and complexity found in industry [3].

B. Nielsen and C. Weise (Eds.): ICTSS 2012, LNCS 7641, pp. 39-54, 2012.
© IFIP International Federation for Information Processing 2012

167

40 M.F. Johansen et al.

In its current form, the application of combinatorial interaction testing to
testing product lines is neither fully automatic nor agile; a technique for au-
tomatic and agile testing of product lines based on combinatorial interaction
testing is the contribution of this paper, presented in Section 3. The technique
is evaluated by applying it to test two industrial product lines, a product line of
safety devices and the Eclipse IDEs; this is presented in Section 4.

In Section 4.1 it is shown how the technique can be implemented using the
Common Variability Language (CVL) [4] tool suite. (CVL is the language of
the ongoing standardization effort of variability languages by OMG.) Five test
suites were executed on 11 strategically selected products, the pair-wise covering
array, of a product line of safety devices to uncover two unknown and previously
undetected bugs.

In Section 4.3 it is shown how the technique can be implemented using the
Eclipse Platform plug-in system. More than 40,000 existing automatic tests were
executed on 13 strategically selected products, the pair-wise covering array, of
the Eclipse IDE product line, producing more than 400,000 test results that
reveal a multitude of potential interaction faults.

2 Background and Related Work

2.1 Product Lines

A product line [5] is a collection of products with a considerable amount of
hardware or code in common. The primary motivation for structuring one’s
products as a product line is to allow customers to have a system tailored for
their purpose and needs, while still avoiding redundancy of code. It is common for
customers to have conflicting requirements. In that case, it is not even possible
to ship one product for all customers.

The Eclipse IDE products [6] can be seen as a software product line. Today,
Eclipse lists 12 products (which configurations are shown in Table 1al) on their
download page?.

One way to model the commonalities and differences in a product line is using
a feature model [7]. A feature model sets up the commonalities and differences
of a product line in a tree such that configuring the product line proceeds from
the root of the tree. Figure 1 shows the part of the feature model for the Eclipse
IDEs that is sufficient to configure all official versions of the Eclipse IDE. The
figure uses the common notation for feature models; for a detailed explanation
of feature models, see Czarnecki and Eisenecker 2000 [8].

2.2 Product Line Testing

Testing a product line poses a number of new challenges compared to testing sin-
gle systems. It has to be ensured that each possible configuration of the product

! http://www.eclipse.org/downloads/compare.php, retrieved 2012-04-12.
2 http://eclipse.org/downloads/, retrieved 2012-04-12.

168

A Technique for Agile and Automatic Interaction Testing for Product Lines 41

EclipselDE

RCP_Platform

JOT emF || GEF | cDT || cvs || webTools | | sVN| Mylyn Jubula | | RAP RSE | | EclipseLink | | windowBuilder

PDE | | Maven | GMF | | Datatools SVN15 | | SVN16 Additional Constraints:
GMF = GEF
Maven = EMF
O
Scout BIRT BIRT = GEF A JDT A PDE

Fig. 1. Feature Model for the Eclipse IDE Product Line

line functions correctly. One way to validate a product line is through testing,
but testing is done on a running system. The software product line is simply a
collection of many products. One cannot test each possible product, since the
number of products in general grows exponentially with the number of features
in the product line. For the feature model in Figure 1, there are 356, 352 possible
configurations.

Reusable Component Testing. In a survey of empirics of what is done in
industry for testing software product lines [9], we found that the technique with
considerable empirics showing benefits is reusable component testing. Given a
product line where each product is built by bundling a number of features im-
plemented in components, reusable component testing is to test each component
in isolation. The empirics have later been strengthened; Ganesan et al. 2012 [10]
is a report on the test practices at NASA for testing their Core Flight Soft-
ware System (CFS) product line. They report that the chief testing done on this
system is reusable component testing [10].

Interaction Testing. There is no single recommended approach available to-
day for testing interactions between features in product lines efficiently [11], but
there are many suggestions. Some of the more promising suggestions are com-
binatorial interaction testing [1], discussed below; a technique called ScenTED,
where the idea is to express the commonalities and differences on the UML model
of the product line and then derive concrete test cases by analyzing it [12]; and
incremental testing, where the idea is to automatically adapt a test case from
one product to the next using the specification of similarities and differences be-
tween the products [13]. Kim et al. 2011 [14] presented a technique where they
can identify irrelevant features for a test case using static analysis.

Combinatorial Interaction Testing: Combinatorial interaction testing [1] is one
of the most promising approaches. The benefits of this approach is that it deals
directly with the feature model to derive a small set of products (a covering
array) which products can then be tested using single system testing techniques,
of which there are many good ones [15].

169

42 M.F. Johansen et al.

Table 1. Eclipse IDE Products, Instances of the Feature Model in Figure 1

(a) Official Eclipse IDE products (b) Pair-wise Covering Array

Feature\Product 123456 789101112 Feature\Product 12345678910111213
EclipseIDE XXXXXXXXXX XX EclipseIDE XX XXXXXXXX XXX
RCP Platform XXXXXXXXXX X X RCP Platform XXXXXXXXXX XX X
CVS XXXXXXXXXX X X CVS - X-X-X--X- - - -
EGit - - XXXX- - - - - - EGit -X--XXX--X - - -
EMF XX---XX-- - - - EMF - XXXX- - XXX XX -
GEF XX---XX-=- - - - GEF - - XXX -XXX - - X -
JDT XX--XXX-X--X JDT - XXXX-X-XX - X -
Mylyn KXXXXXXXXX X - Mylyn - X-X--XX- - - - -
WebTools - X----X---X - WebTools - - XXX-X--XX - -
RSE XXX - -XX- - - - RSE - XX-XX- -2 - - - -
EclipseLink - X----X--X - - EclipseLink -XX--X-XX- - - -
PDE -X--XXX-X- - X PDE - X-XX-X-X- - X -
Datatools - X-- - =X - - - - Datatools - XXXX---X-XX -
CDT --XX---X- - - - CDT - -XX-X-XX - - - -
BIRT - - - - - - X-=-- - - BIRT ---XX---X- - X -
GMF - - - - - X--- - - - GMF - - XXX - -XX - - - -
TP - - - - - X- - - - PTP - -X-XX-XX - - - -
Scout 0 - - - - - - - - X- - - Scout -X-X--X-X- - - -
Jubula - - - - - - - - - X - - Jubula - - XX-X-X-X - - -
RAP . G RAP -XX- -XX-X- - - -
WindowBuilder X - - - - - - - - - - - WindowBuilder -X-X-X-X- - - - -
Maven D - - Maven -XX- - - - - XX - - -
SVN e e oo - oo - - - SVN - X - -XXXXX - X - X
SVN1l5 - - e e - oo - - - - - SVN15 -X--X--X----X
SVN16 - - - - - - - - - - - - SVN16 - - - - - XX-X-X - -

There are three main stages in the application of combinatorial interaction
testing to a product line. First, the feature model of the system must be made.
Second, the t-wise covering array must be generated. We have developed an
algorithm that can generate such arrays from large features models [3]3. These
products must then be generated or physically built. Last, a single system testing
technique must be selected and applied to each product in this covering array.

Table 1b shows the 13 products that must be tested to ensure that every pair-
wise interaction between the features in the running example functions correctly.
Each row represents one feature and every column one product. X’ means that
the feature is included for the product, -’ means that the feature is not included.
Some features are included for every product because they are core features,
and some pairs are not covered since they are invalid according to the feature
model.

Testing the products in a pair-wise covering array is called 2-wise testing, or
pair-wise testing. This is a special case of t-wise testing where t = 2. t-wise
testing is to test the products in a covering array of strength ¢. 1-wise coverage
means that every feature is at least included and excluded in one product, 2-
wise coverage means that every combination of two feature assignments are in the
covering array, etc. For our running example, 3, 13 and 40 products is sufficient
to achieve 1-wise, 2-wise and 3-wise coverage, respectively.

3 See [3] for a definition of covering arrays and for an algorithm for generating them.

170

A Technique for Agile and Automatic Interaction Testing for Product Lines 43

Empirical Motivation. An important motivation for combinatorial interaction
testing is a paper by Kuhn et al. 2004 [16]. They indicated empirically that
most bugs are found for 6-wise coverage, and that for 1-wise one is likely to find
on average around 50%, for 2-wise on average around 70%, and for 3-wise around
95%, etc.

Garvin and Cohen 2011 [17] did an exploratory study on two open source
product lines. They extracted 28 faults that could be analyzed and which was
configuration dependent. They found that three of these were true interaction
faults which require at least two specific features to be present in a product
for the fault to occur. Even though this number is low, they did experience that
interaction testing also improves feature-level testing, that testing for interaction
faults exercised the features better. These observations strengthen the case for
combinatorial interaction testing.

Steffens et al. 2012 [18] did an experiment at Danfoss Power Electronics. They
tested the Danfoss Automation Drive which has a total of 432 possible configu-
rations. They generated a 2-wise covering array of 57 products and compared the
testing of it to the testing all 432 products. This is possible because of the rela-
tively small size of the product line. They mutated each feature with a number
a mutations and ran test suites for all products and the 2-wise covering array.
They found that 97.48% of the mutated faults are found with 2-wise coverage.

3 Proposed Technique

We address two problems with combinatorial interaction testing of software prod-
uct lines in our proposed technique. A generic algorithm for automatically per-
forming the technique is presented in Section 3.2, an evaluation of it is presented
in Section 4 and a discussion of benefits and limitations presented in Section 5.

— The functioning of created test artifacts is sensitive to changes in
the feature model: The configurations in a covering array can be dras-
tically different with the smallest change to the feature model. Thus, each
product must be built anew and the single system test suites changed man-
ually. Thus, plain combinatorial interaction testing of software product lines
is not agile. This limits it from effectively being used during development.

— Which tests should be executed on the generated products: In or-
dinary combinatorial interaction testing, a new test suite must be made for
a unique product. It does not specify how to generate a complete test suite
for a product.

3.1 Idea

Say we have a product line in which two features, A and B, are both optional
and mutually optional. This means that there are four situations possible: Both
A and B are in the product, only A or only B is in the product and neither is in
the product. These four possibilities are shown in Table 2a.

171

44 M.F. Johansen et al.

Table 2. Feature Assignment Combinations

(a) Pairs (b) Triples
Feature\Situation 1 2 3 4 Feature\Situation 1 2 3 4 5 6 7 8
A XX - - A XXXX - - - -
B X - X - B XX - -XX- -

C X-X-X-X-

If we have a test suite that tests feature A, T'est A, and another test suite that
tests feature B, T'estB, the following is what we expect: (1) When both feature
A and B are present, we expect TestA and TestB to succeed. (2) When just
feature A is present, we expect T'est A to succeed. (3) Similarly, when just feature
B is present, we expect TestB to succeed. (4) Finally, when neither feature is
present, we expect the product to continue to function correctly. In all four cases
we expect the product to build and start successfully.

Similar reasoning can be made for 3-wise and higher testing, which cases are
shown in Table 2b. For example, for situation 1, we expect T'estA, TestB and
TestC' to pass, in situation 2, we expect T'est A and TestB to pass, which means
that A and B work in each other’s presence and that both work without C. This
kind of reasoning applies to the rest of the situations in Table 2b and to higher
orders of combinations.

3.2 Algorithm for Implementation

The theory from Section 3.1 combined with existing knowledge about combina-
torial interaction testing can be utilized to construct a testing technique. Algo-
rithm 1 shows the pseudo-code for the technique.

The general idea is, for each product in a t-wise covering array, to execute the
test suites related to the included features. If a test suite fails for one configu-
ration, but succeeds for another, we can know that there must be some kind of
interaction disturbing the functionality of the feature.

In Algorithm 1, line 1, the covering array of strength ¢ of the feature model
F'M is generated and the set of configurations are placed in C A;. At line 2, the
algorithm iterates through each configuration. At line 3, a product is constructed
from the configuration c. PG is an object that knows how to construct a product
from a configuration; making this object is a one-time effort. The product is
placed in p. If the construction of the product failed, the result is placed in
the result table, ResultT'able. The put operation on ResultTable takes three
parameters, the result, the column and the row. The row parameter can be an
asterisk, '*’, indicating that the result applies to all rows.

If the build succeeded, the algorithm continues at line 7 where the algorithm
iterates through each test suite, test, of the product line, provided in a set
Tests. At line 8, the algorithm takes out the feature, f, that is tested by the test
suite test. The algorithm finds that in the object containing the Test-Feature-
Mapping, T F M. At line 9, if this feature f is found to be included in the current

172

A Technique for Agile and Automatic Interaction Testing for Product Lines 45

Algorithm 1. Pseudo Code of the Automatic and Agile Testing Algorithm

1: CA; < GenerateCoveringArray(F M,t)
2: for each configuration ¢ in CA; do
3: p < PG.GenerateProduct(c)

4: if p’s build failed then

5: ResultTable.put(” buildf ailed” , c,)
6: else

T for each test test in Tests do

8: f « TFM.getFeatures(test)
9: if ¢ has features f then

10: result < p.runTest(test)
11: ResultTable.put(result, c, f)
12: end if

13: end for

14: end if

15: end for

configuration, ¢, then, at line 10, the test suite is run. The results from running
the test is placed in the result table?, line 11.

3.3 Result Analysis

Results stored in a result table constructed by Algorithm 1 allow us to do various
kinds of analysis to identify the possible causes of the problems.

Attributing the Cause of a Fault. These examples show how analysis of the
result can proceed:

— If we have a covering array of strength 1, C'A;, of a feature model FM: If a
build fails whenever f; is not included, we know that f; is a core feature.

— If we have a covering array of strength 2, C'As, of a feature model F'M in
which feature f; and f; are independent on each other: If, Ve € C' Ay where
both fi; and f; are included, the test suite for f; fails, while where f; is
included and f5 is not, then the test suite of f; succeeds, we know that the
cause of the problem is a disruption of f; caused by the inclusion fs.

— If we have a covering array of strength 2, C'As, of a feature model FM in
which feature f; and f5 are not dependent on each other: If, Ve € C' As where
both fi and fs5 are included, the test suites for both f; and f5 succeed, while
where fi is included and f5 is not, then the test suite of f; fails, we know
that the cause of the problem is a hidden dependency from f; to fs.

These kinds of analysis are possible for all the combinations of successes and
failures of the features for the various kinds of interaction-coverages.

* Two examples of result tables are shown later, Tables 4b and 5b.

173

46 M.F. Johansen et al.

Of course, if there are many problems with the product line, then several prob-
lems might overshadow each other. In that case, the tester must look carefully
at the error given by the test case to find out what the problem is. For example,
if every build with f; included fails that will overshadow a second problem that
fo2 is dependent on f;.

Guarantees. It is uncommon for a testing technique to have guarantees, but
there are certain errors in the feature model that will be detected.

— Feature f is not specified to be a core feature in the feature model but is
in the implementation. This is guaranteed to be identified using a 1-wise
covering array: There will be a product in the covering array with f not
included that will not successfully build, start or run.

— Feature f7 is not dependent on feature f5 in the feature model, but there is
a dependency in the code. This is guaranteed to be identified using a 2-wise
covering array. There will be a product in the 2-wise covering array with f;
included and f5 not included that will not pass the test suite for feature f;.

4 Evaluation with Two Applications and Results

4.1 Application to ABB’s ”Safety Module”

About the ABB Safety Module. The ABB Safety Module is a physical
component that is used in, among other things, cranes and assembly lines, to
ensure safe reaction to events that should not occur, such as the motor running
too fast, or that a requested stop is not handled as required. It includes various
software configurations to adapt it to its particular use and safety requirements.
A simulated version of the ABB Safety Module was built—independently of
the work in this paper—for experimenting with testing techniques. It is this
version of the ABB Safety Module which testing is reported in this paper.

Basic Testing of Sample Products. Figure 2a shows the feature model of
the Safety Module. There are in total 640 possible configurations. Three of these
are set up in the lab for testing purposes during development. These are shown
in Figure 2b and are, of course, valid configurations of the feature model of the
ABB Safety Module, Figure 2a.

The products are tested thoroughly before they are delivered to a customer.
Five test suites are named in the left part of Table 3a; the right side names the
feature that the test suite tests.

We ran the relevant tests from Table 3a. The results from running the relevant
test suite of each relevant product are shown in Table 3b. The table shows a test
suite in each row and a product in each column. When the test suite tests
a feature not present in the product, the entry is blank. When the test suite
tests a feature in the product, the error count is shown. All test runs gave zero
errors, meaning that they were successful for the three sample products. This
is also what we expected since these three test products have been used during
development of the simulation model to see that it functions correctly.

174

A Technique for Agile and Automatic Interaction Testing for Product Lines 47
(a) Feature Model (b) Sample Products
SafetyDrive Feature\Product al a2 a3
SafetyDrive X X X
SafetyModule X X X
SafetyModule SIL CommunicationBus X X X
SafetyFunctions X X X
i ~~ /0\ StoppingFunctions X X X
g . STO X X X
SafetyFunctions Level3 SS1 X X X
Limit Values - - -
O O Oth X X X
StoppingFunctions Other SSEer X X X
SAR X X -
O SLS X X X
sTo | | ss1 |sse| sar| ssc|| sws||sLs] SBC X X X
/0\ SBC Present X - X
SBC during STO - - -
SBC_Present | | SBC_Absent SBC after STO - - X
SBC before STO X - -
SBC Absent - X -
| SBC_after_STO | | SBC_during_STO | | SBC_before_STO | SMS X X X
SIL X X X
Level2 - X -
Level3 X - X
Fig. 2. ABB Safety Module Product Line
Table 3
(a) Feature-Test Mapping (b) Test errors
Unit-Test Suite Feature Test\Product al a2 a3
GeneralStartUp SafetyDrive GeneralStartUp 0 0O
Level3StartUpTest Level3 Level3StartUpTest 0 0
TestSBC After SBC after STO TestSBC After 0
TestSBC Before SBC before STO TestSBC Before 0
TestSMS SMS TestSMS 000

Testing Interactions Systematically. The three sample products are three
out of 640 possible products. Table 4a shows the 11 products that need to be
tested to ensure that every pair of features is tested for interaction faults; that
is, the 2-wise covering array of Figure 2a.

We built these products automatically and ran the relevant automatic test
suite on them. Table 4b shows the result from running each relevant test suite
on each product of Table 4a. If the features interact correctly, we expect that
there would be no error.

As we can see, products 2, 3, 7 and 8 did not compile correctly. This proved
to be because for certain configurations, the CVL variability model was built
incorrectly, producing a faulty code that does not compile.

For product 9, the test suite for the SMS (”Safe Maximum Speed”) feature
failed. This is interesting, because it succeeded for product 4 and 5. We investi-
gated the problem, and found that the SMS feature does not work if the break is
removed from the ABB Safety Module. This is another example of an interaction

175

48 M.F. Johansen et al.

Table 4. Test Products and Results for Testing the Safety Module

(a) 2-wise Covering Array (b) Test Errors
Feature\Product 012345678910 Test\Product 012345678910
SafetyDrive XXXXXXXXXXX GeneralStartUp 00--000--00
SafetyModule XXXXXXXXXXX Level3StartUpTest 0 0 00 00
CommunicationBus XXXXXXXXXXX TestSBC After 0 -
SafetyFunctions XXXXXXXXXXX TestSBC Before - 0
StoppingFunctions XXXXXXXXXXX TestSMS - 00 -1
STO XXXXXXXXXXX
SS1 - - XX-X-XXX -

Limit Values -X-X-XXX--X
Other - XX - XXXXXXX
SSE - -X- - XXXX- -
SAR -X- -XXX---X
SBC - XX -X-XXXXX
SBC Present -XX-X--XX-X
SBC after STO ----X--X-- -
SBC during STO X - - - - - - X- -
SBC before STO D G X
SBC Absent - - - - - - X--X-
SMS - -X-XX--XX -
SLS -XX--X-X-X -
SIL XXXXXXXXXXX
Level2 - - XX - - XXX - -
Level3 XX--XX---XX

fault. It occurs when SMS is present, and the break is absent. The inclusion of
SBC Absent means that there is no break within in the implementation.

4.2 Implementation with CVL

The pseudo-algorithm for implementing the technique with the CVL [4] tool
suite is shown as Algorithm 2. It is this implementation that was used to test
the ABB Safety Module®. The algorithm assumes that the following is given to
it: a CVL variability model object, V M; a coverage strength, ¢; a list of tests,
tests; and that a mapping between the tests and the features, TFM .6

The algorithm proceeds by first generating a t-wise covering array and setting
them up as resolution models in the CVL model, VM. The CVL model contains
bindings to the executable model artifacts for the ABB Safety Module. Every-
thing that is needed is reachable from the CVL model. It can thus be used to
generate the executable product simulation models; the set of product models is
placed in P. The algorithm then loops through each product p. For each prod-
uct, it sees if the build succeeded. If it did not, that is noted in resultTable.
If the build succeeded, the algorithm runs through each test from the test set
provided. If the feature the test tests is present in the product, run the test and
record the result in the proper entry in resultT'able. The result table we got in
the experiment with the ABB Safety Module is shown in Table 4b.

® The source code for this implementation including its dependencies is found on the
paper’s resource website: http://heim.ifi.uio.no/martifag/ictss2012/
6 All these are available on the paper’s resource website.

176

A Technique for Agile and Automatic Interaction Testing for Product Lines 49

Algorithm 2. Pseudo Code of CVL-based version of Algorithm 1

1: VM.GenerateCoveringArray(t)
2: P+ VM.GenerateProducts()
3: for each product p in P do

4 if p build failed then

5 resultTable.put(”buildfailed”, p,)
6: else

7 for each test test in tests do

8 f « TFM.getFeatures(test)

9: if p has features f then

10: result < p.runTest(test)
11: resultTable.put(result,p, f)
12: end if

13: end for

14: end if

15: end for

4.3 Application to the Eclipse IDEs

The Eclipse IDE product line was introduced earlier in this paper: The feature
model is shown in Figure 1, and a 2-wise covering array was shown in Table 1b.

The different features of the Eclipse IDE are developed by different teams,
and each team has test suites for their feature. Thus, the mapping between the
features and the test suites are easily available.

The Eclipse Platform comes with built-in facilities for installing new features.
We can start from a new copy of the bare Eclipse Platform, which is an Eclipse
IDE with just the basic features. When all features of a product have been
installed, we can run the test suite associated with each feature.

We implemented Algorithm 1 for the Eclipse Platform plug-in system and
created a feature mapping for 36 test suites. The result of this execution is
shown in Table 5b. This experiment” took in total 10.8 GiB of disk space; it
consisted of 40,744 tests and resulted in 417,293 test results that took over 23
hours to produce on our test machine.

In Table 5b, the first column contains the results from running the 36 test
suites on the released version of the Eclipse IDE for Java EE developers. As
expected, all tests pass, as would be expected since the Eclipse project did test
this version with these tests before releasing it.

The next 13 columns show the result from running the tests of the products
of the complete 2-wise covering array of the Eclipse IDE product line. The blank
cells are cells where the feature was not included in the product. The cells with
a -’ show that the feature was included, but there were no tests in the test setup
for this feature. The cells with numbers show the number of errors produced by
running the tests available for that feature.

" The experiment was performed on Eclipse Indigo 3.7.0. The computer on which we
did the measurements had an Intel Q9300 CPU @2.53GHz, 8 GiB, 400MHz RAM
and the disk ran at 7200 RPM.

177

50 M.F. Johansen et al.

Table 5. Tests and Results for Testing the Eclipse IDE Product Line, Figure 1, Using
the 2-wise Covering Array of Table 1b

(a) Tests (b) Results, Number of Errors
Test Suite Tests Time(s) Feature\Prod. JavaEE 1 2 345 67 8 91011 12 13
EclipselIDE 0 0 EclipseIDE - - - - - - - - - - - - -
RCP Platform 6,132 1,466 RCP Platform 01790940090009187 7 0 010
CVS 19 747 CVS 0 0 0 0 0
EGit 0 0 EGit - - - - -
EMF 0 0 EMF - - - - - - - - - -
GEF 0 0 GEF - - - - - - - -
JDT 33,135 6,568 JDT 0 11 800 00 5 3 0
Mylyn 0 0 Mylyn - - - - -
WebTools 0 0 WebTools - - - - - - -
RSE 0 0 RSE - - - - -
EclipseLink 0 0 EclipseLink - - - - - -
PDE 1,458 5,948 PDE 0 0 00 0 0 0
Datatools 0 0 Datatools - - - - - - -
CDT 0 0 CDT - - - - -
BIRT 0 0 BIRT - - - -
GMF 0 0 GMF - - - - - -
PTP 0 0 PTP - - - - -
Scout 0 0 Scout - - - -
Jubula 0 0 Jubula - - - - -
RAP 0 0 RAP - - - - -
WindowBuilder 0 0 WindowBuilder - - - -
Maven 0 0 Maven - - - -
SVN 0 0 SVN - - - - - - - -
SVN15 0 0 SVNI15 - - - -
SVN16 0 0 SVNI16 - - - -
Total 40,744 14,729

Products 4-5, 7 and 11-12 pass all relevant tests. For both features CVS and
PDE, all products pass all tests. For product 2-3 and 9-10, the JDT test suites
produce 11, 8, 5 and 3 error respectively. For the RCP-platform test suites, there
are various number of errors for products 1-3, 6, 8-10 and 13.

We executed the test several times to ensure that the results were not coin-
cidental, and we did look at the execution log to make sure that the problems
were not caused by the experimental set up such as file permissions, lacking disk
space or lacking memory. We did not try to identify the concrete bugs behind
the failing test cases, as this would require extensive domain knowledge that was
not available to us during our research.®

4.4 Implementation with Eclipse Platform’s Plug-in System

Algorithm 3 shows the algorithm of our testing technique for the Eclipse Platform
plug-in system?.

8 We will report the failing test cases and the relevant configuration to the Eclipse
project, along with the technique used to identify them.

® The source code for this implementation including its dependencies is available
through the paper’s resource website, along with the details of the test execution
and detailed instructions and scripts to reproduce the experiment.

178

A Technique for Agile and Automatic Interaction Testing for Product Lines 51

Algorithm 3. Pseudo Code of Eclipse-based version of Algorithm 1

1: CA <~FM.GenerateCoveringArray(t)
2: for each configuration ¢ in CA do
3: p <« GetBasicEclipsePlatform()

4. for each feature f in ¢ do

5: p.install Feature(f)

6: end for

7: for each feature f in ¢ do

8: tests < f.get AssociatedTests()
9: for each test test in tests do
10: p.installTest(test)

11: result <— p.runTest(test)
12: table.put(result,c, f)

13: end for

14: end for

15: end for

The algorithm assumes that the following is given: a feature model, F M, and
a coverage strength, ¢.

In the experiment in the previous section we provided the feature model in
Figure 1. The algorithm loops through each configuration in the covering array.
In the experiment, it was the one given in Table 1b. For each configuration, a ver-
sion of Eclipse is constructed: The basic Eclipse platform is distributed as a pack-
age. This package can be extracted into a new folder and is then ready to use. It
contains the capabilities to allow each feature and test suite can be installed auto-
matically using the following command: <eclipse executable> -application
org.eclipse.equinox.p2.director -repository <repositoryl,...>
-installIU <feature name> Similar commands allow tests to be executed.

A mapping file provides the links between the features and the test suites.
This allows Algorithm 3 to select the relevant tests for each product and run
them against the build of the Eclipse IDE. The results are put into its entry in
the result table. The results from the algorithm are in a table like the one given
in the experiment, shown in Table 5b.

5 Benefits and Limitations

Benefits

— Usable: The technique is a fully usable software product line testing tech-
nique: It scales, and free, open source algorithms and software exists for
doing all the automatic parts of the technique.'°

— Agile: The technique is agile in that once set up, a change in a part of the
product line or to the feature model will not cause any additional manual

10 Software and links available on the paper’s resource website: http://heim.ifi.uio.
no/martifag/ictss2012/

179

52

M.F. Johansen et al.

work. The product line tests can be rerun with one click throughout devel-
opment. (Of course, if a new feature is added, a test suite for that feature
should be developed.)

Continuous Integration: The technique fits well into a continuous inte-
gration framework. At any point in time, the product line can be checked
out from the source code repository, built and the testing technique run. For
example, the Eclipse project uses Hudson [19] to check out, build and test
the Eclipse IDE and its dependencies at regular intervals. Our technique can
be set up to run on Hudson, and every night produce a result table with
possible interaction faults in a few hours on suitable hardware.

Tests the feature model: The technique tests the feature model in that
errors might be found after a change of it. For example, that a mandatory
relationship is missing causing a feature to fail.

Automatic: The technique is fully automatic except making the test suites
for each feature, a linear effort with respect to the number of features, and
making the build-scripts of a custom product, a one-time effort.
Implemented: The technique has been implemented and used for CVL-
based product lines and for Eclipse-based product lines, as described in
Section 4.

Run even if incomplete: The technique can be run even if the product
line test suites are not fully developed yet. It supports running a partial test
suite, e.g. when only half of the test suites for the features are present, one
still gets some level of verification. For example, if a new feature is added
to the product line, a new test suite is not needed to be able to analyze the
interactions between the other features and it using the other feature’s test
suites.

Parallel: The technique is intrinsically parallel. Each product in the covering
array can be tested by itself on a separate node. For example, executing the
technique for the Eclipse IDE could have taken approximately 1/13th of the
time if executed on 13 nodes, taking approximately in 2 hours instead of 23.

Limitations

180

Emergent features: Emergent features are features that emerge from the
combination of two or more features. Our technique does not test that an
emergent feature works in relation to other features.

Manual Hardware Product Lines: Product line engineering is also used
for hardware systems. Combinatorial interaction testing is also a useful tech-
nique to use for these products lines [20]; however, the technique described in
this paper is not fully automatic when the products must be set up manually.
Quality of the automated tests: The quality of the results of the tech-
nique is dependent on the quality of the automated tests that are run for
the features of the products.

Feature Interactions: A problem within the field of feature interaction
testing is how to best create tests as to identify interaction faults occur
between two or more concrete features, the feature interaction problem [21].

A Technique for Agile and Automatic Interaction Testing for Product Lines 53

Although an important problem, it is not what our technique is for. Our
technique covers all simple interactions and gives insight into how they work
together.

6 Conclusion

In this paper we presented a new technique for agile and automatic interaction
testing for product lines. The technique allows developers of product lines to set
up automatic testing as a part of their continuous integration framework to gain
insight into potential interaction faults in their product line.

The technique was evaluated by presenting the results from two applications
of it: one to a simulation model of the ABB safety module product line using the
CVL tool suite, and one to the Eclipse IDE product lines using the Eclipse Plat-
form plug-in system. The cases show how the technique can identify interaction
faults in product lines of the size and complexity found in industry.

Acknowledgments. The work presented here has been developed within the
VERDE project ITEA 2 - ip8020. VERDE is a project within the ITEA 2 -
Eureka framework.

The authors would like to thank the anonymous reviewers for their helpful
feedback.

References

1. Cohen, M.B., Dwyer, M.B., Shi, J.: Constructing interaction test suites for highly-
configurable systems in the presence of constraints: A greedy approach. IEEE
Transactions on Software Engineering 34, 633-650 (2008)

2. Johansen, M.F., Haugen, ., Fleurey, F.: Properties of Realistic Feature Models
Make Combinatorial Testing of Product Lines Feasible. In: Whittle, J., Clark,
T., Kithne, T. (eds.) MODELS 2011. LNCS, vol. 6981, pp. 638-652. Springer,
Heidelberg (2011)

3. Johansen, M.F., Haugen, @., Fleurey, F.: An Algorithm for Generating t-wise Cov-
ering Arrays from Large Feature Models. In: Alves, V., Santos, A. (eds.) Proceed-
ings of the 16th International Software Product Line Conference (SPLC 2012).
ACM (2012)

4. Haugen, ., Mgller-Pedersen, B., Oldevik, J., Olsen, G.K., Svendsen, A.: Adding
standardized variability to domain specific languages. In: SPLC 2008: Proceedings
of the 2008 12th International Software Product Line Conference, pp. 139-148.
IEEE Computer Society, Washington, DC (2008)

5. Pohl, K., Bockle, G., van der Linden, F.J.: Software Product Line Engineering:
Foundations, Principles and Techniques. Springer-Verlag New York, Inc., Secaucus
(2005)

6. Rivieres, J., Beaton, W.: Eclipse Platform Technical Overview (2006)

7. Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S.: Feature-oriented
domain analysis (foda) feasibility study. Technical report, Carnegie-Mellon Univer-
sity Software Engineering Institute (November 1990)

181

54

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.
20.

21.

182

M.F. Johansen et al.

Czarnecki, K., Eisenecker, U.: Generative programming: methods, tools, and ap-
plications. ACM Press/Addison-Wesley Publishing Co., New York (2000)
Johansen, M.F., Haugen, ., Fleurey, F.: A Survey of Empirics of Strategies
for Software Product Line Testing. In: O’Conner, L. (ed.) Proceedings of the
2011 IEEE Fourth International Conference on Software Testing, Verification
and Validation Workshops, ICSTW 2011, pp. 266-269. IEEE Computer Society,
Washington, DC (2011)

Ganesan, D., Lindvall, M., McComas, D., Bartholomew, M., Slegel, S., Medina,
B., Krikhaar, R., Verhoef, C.: An analysis of unit tests of a flight software product
line. Science of Computer Programming (2012)

Engstrom, E., Runeson, P.: Software product line testing - a systematic mapping
study. Information and Software Technology 53(1), 2-13 (2011)

Reuys, A., Reis, S., Kamsties, E., Pohl, K.: The scented method for testing software
product lines. In: K&kold, T., Duenas, J.C. (eds.) Software Product Lines, pp.
479-520. Springer, Heidelberg (2006)

Uzuncaova, E., Khurshid, S., Batory, D.: Incremental test generation for software
product lines. IEEE Transactions on Software Engineering 36(3), 309-322 (2010)
Kim, C.H.P., Batory, D.S., Khurshid, S.: Reducing combinatorics in testing product
lines. In: Proceedings of the Tenth International Conference on Aspect-oriented
Software Development, AOSD 2011, pp. 57-68. ACM, New York (2011)

Binder, R.V.: Testing object-oriented systems: models, patterns, and tools.
Addison-Wesley Longman Publishing Co., Inc., Boston (1999)

Kuhn, D.R., Wallace, D.R., Gallo, A.M.: Software fault interactions and impli-
cations for software testing. IEEE Transactions on Software Engineering 30(6),
418-421 (2004)

Garvin, B.J., Cohen, M.B.: Feature interaction faults revisited: An exploratory
study. In: Proceedings of the 22nd International Symposium on Software Reliability
Engineering (ISSRE 2011) (November 2011)

Steffens, M., Oster, S., Lochau, M., Fogdal, T.: Industrial evaluation of pairwise spl
testing with moso-polite. In: Proceedings of the Sixth International Workshop on
Variability Modelling of Software-intensive Systems, VaMoS 2012 (January 2012)
Moser, M., O’Brien, T.: The Hudson Book. Oracle Inc. (2011)

Johansen, M.F., Haugen, 0., Fleurey, F., Eldegard, A.G., Syversen, T.: Generating
Better Partial Covering Arrays by Modeling Weights on Sub-Product Lines. In:
France, R.B., Kazmeier, J., Breu, R., Atkinson, C. (eds.) MODELS 2012. LNCS,
vol. 7590, pp. 269-284. Springer, Heidelberg (2012)

Bowen, T., Dworack, F., Chow, C., Griffeth, N., Herman, G., Lin, Y.: The fea-
ture interaction problem in telecommunications systems. In: Seventh International
Conference on Software Engineering for Telecommunication Switching Systems,
SETSS 1989, pp. 59-62. IET (1989)

Part 111

Appendices

183

Appendix A

Resource Pages for Papers

185

[Resource Page for Paper 1]

Johansen et al. 2011 SPL Covering Array Tool discussed in '"Properties of
Realistic Feature Models make Combinatorial Testing of Product Lines
Feasible"

Download the SPL Covering Array Tool v0.2 (MODELS 2011).

It includes the following software as dependencies, bundled with the tool:

o Feature IDE

o SPLAR - Software Product Lines Automated Reasoning library
e SAT4])

e JSON

e Apache Commons Math

Script for reproducing results:

Download a script for reproduction of the results presented in the paper. The models
presented in the paper are required to run the script.

Usage:
java -jar SPLCATool-v0.2-MODELS2011 jar

SPL Covering Array Tool v0.2 (MODELS 2011)
http://heim.ifi.uio.no/martifag/models2011/spltool/
Usage: <task>
Tasks:
-t count solutions -fm <feature model>
-t sat_time -fm <feature model>
-t t wise -fm <feature model> -s <strength> (-BTR "Bow Tie Reduction")
-t calc cov -fm <feature model> -s <strength> -ca <covering array>
-t verify solutions -fm <feature model> -check <covering array>
-t help (this menu)
Supported Feature models formats:
- Feature IDE GUI DSL (.m)
- Simple XML Feature Models (.xml)
- Dimacs (.dimacs)

Examples:

> java -jar SPLCATool-v0.2-MODELS2011.jar -t count solutions -fm TightVNC.m
SPL Covering Array Tool v0.2 (MODELS 2011)
http://heim.ifi.uio.no/martifag/models2011/spltool/

Loading GUI DSL: TightVNC.m

Successfully loaded and converted the model:

Features: 30

Constraints: 4

Counting solutions

Solutions: 297252.0

> java -jar SPLCATool-v0.2-MODELS2011l.jar -t t wise -fm Eshop-fm.xml -s 2
SPL Covering Array Tool v0.2 (MODELS 2011)

186

http://heim.ifi.uio.no/martifag/models2011/spltool/

Loading SXFM: Eshop-fm.xml

Successfully loaded and converted the model:

Features: 287

Constraints: 22

Generating 2-wise covering array

Running algorithm: Chvatal's algorithm adopted for Covering Array
generation

Uncovered pairs left: 164164

0/164164

Done. Size: 22, time: 364583 milliseconds
Wrote result to Eshop-fm.xml.ca2.csv

> java -jar SPLCATool-v0.2-MODELS2011.jar -t sat time -fm 2.6.28.6-
icsell.dimacs

SPL Covering Array Tool v0.2 (MODELS 2011)
http://heim.ifi.uio.no/martifag/models2011/spltool/
Loading dimacs: 2.6.28.6-icsell.dimacs

CNF: Given p and c: 6888 and 343944

Successfully loaded and converted the model:
Features: 6888

Constraints: 187193

Satisfying the feature model

SAT done: 125457 microseconds, sat: true

Johansen et al. 2011 feature models discussed in '""Properties of Realistic
Feature Models make Combinatorial Testing of Product Lines Feasible"

Download the feature models discussed in the paper here.

Contains the following models from various sources

2.6.28.6-icsel 1.dimacs - "X86 Linux kernel 2.6.28.6", from "Feature Models in the
Wild" [3]

ecos-icsel 1.dimacs - "eCos 3.0 1386pc, from "Feature Models in the Wild" [3]
freebsd-icsel1.dimacs - FreeBSD kernel 8.0.0, from "Feature Models in the Wild" [3]
Eshop-fm.xml - e-Shop, From "Domain Analysis of E-Commerce Systems Using
Feature-Based Model Templates" by Sean Quan Lau, 2006,

Violet.m - "Violet, graphical model editor" [4]

Berkeley.m - "Berkeley DB" [5]

arcade_game pl fm.xml - "Arcade Game Maker Pedagogical Product Line" [6]
Graph-product-line-fm.xml - From "A Standard Problem for Evaluating Product-Line
Methodologies", by Lopez-Herrejon and Batory, 2001

Gg4.m - "Graph Product Line Nr. 4", a more complex version of the Graph Product
line from 2006

smart home fm.xml - From "A Framework for Constructing Semantically
Composable Feature Models from Natural Language Requirements" by Nathan
Weston et. al, 2009

TightVNC.m - "Tight VNC Remote Desktop Software" [7]

Apl.m - "AHEAD Tool Suite (ATS) Product Line", from Trujillo et al. 2006

fame dbms_ fm.xml - "Fame DBMS" [8]

187

e connector fm.xml - From "Using Domain-Specific Languages for Product Line
Engineering" by Markus Volter, 2009

e stack fm.xml - From "Using Domain-Specific Languages for Product Line
Engineering" by Markus Volter, 2009

e REAL-FM-12.xml - From "Efficient Reasoning Techniques for Large Scale Feature
Models" by Marcilio Mendonca, 2009

e movies_app fm.xml - From "Context Awareness for Dynamic Service-Oriented
Product Lines" by Carlos Parra et. al 2009

e aircraft fm.xml - From "Using Domain-Specific Languages for Product Line
Engineering" by Markus Volter, 2009

e car_fm.xml - From "Automated Reasoning for Multi-step Feature Model
Configuration Problems" by Jules White et. al, 2009

[3]: http://code.google.com/p/linux-variability-analysis-tools/source/browse/?repo=formulas
[4]: http://sourceforge.net/projects/violet/

[5]: http://www.oracle.com/us/products/database/berkeley-db/index.html

[6]: http://www.sei.cmu.edu/productlines/ppl/

[7]: http://www.tightvnc.com/

[8]: http://fame-dbms.org/

[Resource Page for Paper 2]

Resource Page for "An Algorithm for Generating t-wise Covering Arrays
from Large Feature Models"

Welcome to the resource page for the SPLC 2012 publication titled "An Algorithm for
Generating t-wise Covering Arrays from Large Feature Models" written by Martin Fagereng
Johansen, @Qystein Haugen and Franck Fleurey.

Contents

e Tool - implementation of ICPL
e Feature Model Corpus
e Measurements, Scripts and Adaptors

Tool - implementation of ICPL

The SPL Covering Array Tool v0.3 (SPLC 2012) contains an implementation of the ICPL
algorithm for 1-3 wise covering array generation. The source code is available licensed under
the Eclipse Public License - v 1.0.

188

Since CASA, NIST ACTS and MoSo-PoLiTe are only available through their providers, they
are not distributed with this download. If you want to test the full version of the tool that
includes CASA, NIST ACTS and MoSo-PoLiTe, contact the respective sources to obtain the
tools, then contact us to get a version of the tool with the proper adaptors.

When running the tool, ICPL is called 'ICPL', and the algorithm discussed as 'Algorithm 1' in
the paper is called 'Chvatal'. ICPL is of course set as the default algorithm. If you want to
generate a covering array using ICPL run:

java -jar SPLCATool-v0.3-SPLC2012.jar -t t wise -a ICPL -s <strength> -fm
<feature model>

The tool includes the following software as dependencies, bundled with the tool:

e Feature IDE
e SPLAR - Software Product Lines Automated Reasoning library

e SAT4)

e JSON

e Apache Commons Math

e google-gson

e JavaBDD

e jgraph

o JUnit

e oOpencsv

e guidsl

o Jakarta
Usage:

java -jar SPLCATool-v0.3-SPLC2012.jar

SPL Covering Array Tool v0.3 (SPLC 2012) (ICPL edition)
http://heim.ifi.uio.no/martifag/splc2012/
Args: {limit=100%, t=help, a=ICPL}
Usage: <task>
Tasks:
-t count solutions -fm <feature model>
-t sat time -fm <feature model>

-t t wise -a Chvatal -fm <feature model> -s <strength, 1-4> (-startFrom
<covering array>) (-limit <coverage limit>) (-sizelimit <rows>) (-onlyOnes)
(-noAllZeros)

-t t wise -a ICPL -fm <feature model> -s <strength, 1-3> (-startFrom
<covering array>) (-onlyOnes) (-noAllZeros) [Inexact: (-sizelimit <rows>)

(-limit <coverage limit>)]

-t t wise -a CASA -fm <feature model> -s <strength, 1-6>

-t calc _cov -fm <feature model> -s <strength> -ca <covering array>
-t verify solutions -fm <feature model> -check <covering array>

-t help (this menu)

Supported Feature models formats:

- Feature IDE GUI DSL (.m)

- Simple XML Feature Models (.xml)

- Dimacs (.dimacs)

- CNF (.cnf)

189

Examples

> java -jar SPLCATool-v0.3-SPLC2012.jar -t t wise -a ICPL -s 2 -fm Eshop-

fm.xml

SPL Covering Array Tool v0.3 (SPLC 2012) (ICPL edition)
http://heim.ifi.uio.no/martifag/splc2012/

Args:

{1imit=100%, fm=Eshop-fm.xml, t=t wise, s=2, a=ICPL}

Loading SXFM: Eshop-fm.xml

Successfully loaded and converted the model:
Features: 287

Constraints: 22

Generating 2-wise covering array with algorithm: ICPL
Running algorithm: ICPL

Covering 100%

-—— l-wise ---

l-wise done, solutions: 3, invalid: 28
--- 2-wise ---

Uncovered: 0, progress: 100% with solutions: 21
2-wise done, solutions: 21, invalid: 15638

Done.

Size: 21, time: 3765 milliseconds

Wrote result to Eshop-fm.xml.caZ2.csv

Feature Model Corpus

These are the feature models discussed in the paper:

190

2.6.28.6-icsell.dimacs - "X86 Linux kernel 2.6.28.6", from "Feature Models in the
Wild" [1]

ecos-icsel 1.dimacs - "eCos 3.0 1386pc, from "Feature Models in the Wild" [1]
freebsd-icsel 1.dimacs - FreeBSD kernel 8.0.0, from "Feature Models in the Wild" [1]
Eshop-fm.xml - e-Shop, From "Domain Analysis of E-Commerce Systems Using
Feature-Based Model Templates" by Sean Quan Lau, 2006,

Violet.m - "Violet, graphical model editor" [2]

Berkeley.m - "Berkeley DB" [3]

arcade game pl fm.xml - "Arcade Game Maker Pedagogical Product Line" [4]
Graph-product-line-fm.xml - From "A Standard Problem for Evaluating Product-Line
Methodologies", by Lopez-Herrejon and Batory, 2001

Gg4.m - "Graph Product Line Nr. 4", a more complex version of the Graph Product
line from 2006

smart_home fm.xml - From "A Framework for Constructing Semantically
Composable Feature Models from Natural Language Requirements" by Nathan
Weston et. al, 2009

TightVNC.m - "TightVNC Remote Desktop Software" [5]

Apl.m - "AHEAD Tool Suite (ATS) Product Line", from Trujillo et al. 2006

fame dbms_fm.xml - "Fame DBMS" [6]

connector fm.xml - From "Using Domain-Specific Languages for Product Line
Engineering" by Markus Voelter, 2009

stack fm.xml - From "Using Domain-Specific Languages for Product Line
Engineering" by Markus Voelter, 2009

e REAL-FM-12.xml - From "Efficient Reasoning Techniques for Large Scale Feature
Models" by Marcilio Mendonca, 2009

e movies_app fm.xml - From "Context Awareness for Dynamic Service-Oriented
Product Lines" by Carlos Parra et. al 2009

e aircraft fm.xml - From "Using Domain-Specific Languages for Product Line
Engineering" by Markus Voelter, 2009

e car_fm.xml - From "Automated Reasoning for Multi-step Feature Model
Configuration Problems" by Jules White et. al, 2009

[1]: http://code.google.com/p/linux-variability-analysis-tools/source/browse/?repo=formulas
[2]: http://sourceforge.net/projects/violet/

[3]: http://www.oracle.com/us/products/database/berkeley-db/index.html

[4]: http://www.sei.cmu.edu/productlines/ppl/

[5]: http://www.tightvnc.com/

[6]: http://fame-dbms.org/

Measurements, Scripts and Adaptors

Adaptors

In order to run the test scripts for the three algorithms CASA, NIST ACTS and MoSo-
PoLiTe, contact the respective providers to get the implementations. Then, contact us to get
the tool that includes adaptors for the tools to run the test scripts for them.

Measurements

These files contain all the measurements done for each strength, algorithm and feature model.
The measurements are stored as Office Open XML-files. The measurements for each strength
are found in separate tabs.

o ICPL
e Alg. 1
e CASA
« IPOG

e MoSo-PoLiTe
e Comparison Table

Scripts

These scripts allow the reproduction of the measurements for each strength, algorithm and
model.

o ICPL
e Alg. 1
e CASA
o [POG

e MoSo-PoLiTe

191

[Resource Page for Paper 3]

Johansen et al. 2011 SPL Covering Array Tool discussed in "Bow Tie
Testing - A Testing Pattern for Product Lines"

Download the SPL Covering Array Tool v0.1 (EuroPLoP 2011).

It includes the following software as dependencies, bundled with the tool:

e Feature IDE

e SPLAR - Software Product Lines Automated Reasoning library
o SAT4)

e JSON

e Apache Commons Math

Usage:
java -jar SPLCATool-v0.1-EuroPLoP2011.jar

SPL Covering Array Tool v0.1 (EuroPLoP 2011)
http://heim.ifi.uio.no/martifag/europlop201l1l/splcatool/
Args: {1limit=100%, t=help, threads=1, a=Chvatal}

Usage: <task>

Tasks:

-t count solutions -fm <feature model>

-t t wise -fm <feature model> -s <strength, 1-3> (-startFrom <covering
array>) (-limit <coverage limit>) (-sizelimit <rows>) (-onlyOnes) (-
noAllZeros) (-BTR (Bow-Tie Reduction))

-t help (this menu)

Supported Feature models formats:

- Feature IDE GUI DSL (.m)

- Simple XML Feature Models (.xml)
- Dimacs (.dimacs)

- CNF (.cnf)

Example Feature Model and Annotations

Feature Model

The running example from the paper is available:

—_— e
EclipseFieSystem
= s
. M
_— _ PNy
_— - / . — . / .
(o5 vins2 |t [Macosx| [sars [A [s v Subcis

L

| cvs_over_sshz | | ..’1 4x|| - 1 6.x

Carbon A MacOSX a x86 v Cocoa A MacOSX A (x86 v x86_64) v GTI a Limx o PPC v GTK a Linux A PPCE4 v
GTK A Linwx 4 5380 v GTK Linwx 4 5390 v GTK a Linux A x86 v GTK A Linux A x86 64 v GTK A Solaris » SPARC v
GTK a Solans A x86 v Mot A ADC a PPC v Motif A hpux #1864 _32 v Motif A Linux A x86 v Win32 a O5_Win32 A x86 v
Win32 n O5_Win32 » xB6_64

192

Annotations

These annotations were discussed in the paper.

AL WindowingSystem
AL Hardware
AL OS

Example run

The following run will produce the result discussed in the paper. The 2-wise covering array is
written to EclipseSPLRef.m.ca2.csv and the reduced version is written to
EclipseSPLRef.m.ca2.csv.btr.csv.

> java -jar SPLCATool-v0.l-EuroPLoP20ll.jar -t t wise -fm EclipseSPLRef.m -
s 2 -BTR

http://heim.ifi.uio.no/martifag/europlop201l1/splcatool/

Args: {1limit=100%, BTR=, fm=EclipseSPLRef.m, t=t wise, s=2, threads=1,
a=Chvatal}

Loading GUI DSL: EclipseSPLRef.m

Successfully loaded and converted the model:

Features: 37

Constraints: 610

Generating 2-wise covering array with algorithm: Chvatal

Running algorithm: Chvatal's algorithm adopted for Covering Array
generation

Covering 100%

Uncovered pairs left: 2664

0/2664

Done. Size: 41, time: 1045 milliseconds

BTR. Size: 20

Wrote result to EclipseSPLRef.m.ca2.csv

Wrote result to EclipseSPLRef.m.caZ.csv.btr.csv

[Resource Page for Paper 4]

Resource Page for ""Generating Better Partial Covering Arrays by
Modeling Weights on Sub-Product Lines"

Welcome to the resource page for the MODELS 2012 publication titled "Generating Better
Partial Covering Arrays by Modeling Weights on Sub-Product Lines" written by Martin
Fagereng Johansen, Qystein Haugen, Franck Fleurey, Anne Grete Eldegard, and Torbjern
Syversen.

193

Contents

e Tool
e Example Models

Tool

Download the SPL Covering Array Tool v0.4 (MODELS 2012). The source is available
freely. The source is available upon request.

It includes the following software as dependencies, bundled with the tool:

e Feature IDE
e SPLAR - Software Product Lines Automated Reasoning library

o SAT4)

e JSON

e Apache Commons Math

e google-gson

e JavaBDD

e jgraph

e JUnit

e oOpencsv

o guids|

o Jakarta
Examples:

The tool has a GUI interface. The interface consists of a number of tabs, each including the
fields for the required and optional input for each functionality. Three of the most relevant
features are listed here as examples. Note: Output is written to standard output. Start the GUI
in a command shell using java (and not javaw). Alternatively, redirect output to a log file.

Generate a new Covering Array:

The following example shows the tab for generating covering arrays. When the "weighted"
checkbox is checked, the generation is based on weights instead of tuples. The feature model
is entered first, followed by the weights file and the optionally the ordering file to give the
result a specific feature order. If you want to extend an existing covering array, enter the basis
in the "start from"-field. "t" specifies the strength. "Coverage limit" specifies the coverage to
be achieved. A blank entry defaults to 100%. "Size limit" is the maximum number of products
to generate. Press "Generate Covering Array"

194

PL Covering Array Tool v0.4 (MODELS 2012) - o] x|

all | Time satisfigbiity | Count Solutions | Verify Solutions | Verify Weighted Partial Solutions
Generate Covering Array | Calculate Coverage I Suggest Improvements I Generate FeatureIDE Files

Feature Model: IC: \EdlipseIDE\Edipse.m Browse. ., |
Weights: IC: \EdipseIDE\edipse-red.m. actual-weighted. csw Browse. ., |
Ordering File: IC: \EdlipseIDE\edipse.m.arder.csv Browse. .. |
Start From: I Browse.., |
k= IE—

Coveraqge limit: I'EIE_

Size limit: [

Weighted: v

Generate Covering Array |

Calculate Coverage of an existing set of products:

The following example generates the 3-wise coverage of a set of products. When the
"weighted" checkbox is checked, the weighted coverage is calculated, else the tuple coverage
is calculated.

PL Covering Array Tool v0.4 (MODELS 2012) — o] x|

All | Time Satisfiability | Count Solutions | Verify Solutions | Verify Weighted Partial Solutions
Generate Covering Array ~ Calculate Coverage | Suggest Improvements I Generate FeatureIDE Files

Feature Model: IC: \EclipseIDE\Edlipse.m Browse. ., |
Covering Array: IC: \EdipseIDE\edipse-red.m. actual. csv Browse. .. |
Weights: IC: \EdipseIDE\edipse-red.m. actual-weighted. csw Browse. ., |
E IZ—

Weighted: v

i Calculate Coverage

Suggest improvements to a set of products:

The following example generates either single or double changes to the set of products to
increase the 3-wise weight coverage of the set of products. "search level" is the maximum
number of changes to search for. Only level 1-3 is supported by the tool in the current version.

195

PL Covering Array Tool v0.4 (MODELS 2012) - o] x|

AJIl Time Satisfiability | Count Solutions | Verifv Solutions | Verifv Weighted Partial Solutions
Generate Covering Array I Calculate Coverage | Suggest Improvements || Generate FeatureIDE Files

Feature Model: IC: \EdlipseIDE\Edipse.m Browse. .,

Covering Array: IC: \EdipseIDE\edipse-red.m.actual. csw Browse. .,

Weights: IC: \EdipseIDE\edipse-red.m. actual-weighted. csw Browse. ..

- |2
Search level: Il

Weighted: [v

I

Suggest Improvements

Models

ABC example

e Feature model

o Weights
e Ordering
TOMRA product line case

The complete models from TOMRA discussed in the paper are unfortunately not available
due to sensitivity concerns.

Eclipse IDE product line case

e Feature model
e Products

o Weights
e Ordering

196

[Resource Page for Paper 5]

Resource page for ""A Technique for Agile and Automatic Interaction
Testing for Product Lines"

On this website you will find information on how to reproduce the results from the ICTSS
2012 paper titled "A Technique for Agile and Automatic Interaction Testing for Product
Lines" written by Martin Fagereng Johansen, Qystein Haugen, Franck Fleurey, Erik Carlson,
Jan Endresen, and Tormod Wien.

Applying the Technique for Testing of Eclipse-based Product Lines

1. Setting up the Directory Structure

Decide on a root directory in which all files related to the testing will be stored. In this
directory, create these directories:

e "models", contains all input to the testing tools.

o "packages", contains all packages to be used to construct the software to be tested.
e "products", will store all built and tested products and their associated workspaces.
o "results", will store all generated results.

o scripts", contains all scripts used for testing.

o "tools", contains all tools used for testing.

o "workspace", workspace for the Eclipse tool used to build the package repository.

2. Acquiring the Required Tools
Download and extract the following free tools in the "tools" directory.

7-Zip Command Line Version (9.20)

Eclipse Platform (3.7.0)

UnxUtils (of 2007-03-01), Port of the most important GNU utilities to Windows
An implementation of Algorithm 3 from the paper (Contact us to get the source
code.)

PwnNE

3. Building the Package Repository

1. Download the mirroring-script and place it in the scripts directory. Download and
edit the environment set up script in which the path to the java.exe, cmd.exe and the
root directory must be specified. Executing the mirroring script will construct mirrors
for the Eclipse Indigo repositories in "%basedir%/packages/repos/". This will take a
while, and might require rerunning the script several times to ensure that all
packages were downloaded correctly. The size of these repositories during the
experiments presented in the paper was 3.6 GiB.

2. Place a copy of the package containing the Eclipse Platform in "packages".

197

3. Download the Eclipse Automated Tests for Eclipse 3.7.0 and extract them in the
"packages" directory.

4. Setting up the Required Models

The technique requires three files to be built.

1. The feature model, for example such as the one for the Eclipse IDEs.

——

J DT

_EMF FG”T EilE

WebTools SVN

Eclipse|DE

RCP_Platform

rﬁ@mmr-:ﬂ

Maven | | GMF Damtc-:ls
BIRT

GMF = GEF
Mawen = EMF
BIRT = GEF » JOT » PDE

2. The mapping between features are code artifacts, as for example the one used in the

experiment in the paper.

Ccvs
EGit
EMF
GEF
DT
PDE

oo |~ o s |w M=

Feature

Mylyn

RAvln

Component
org.eclipse.cvs
org.eclipse.egit
org.eclipse.emf
org.eclipse.gef
org.eclipse.jdt
org.eclipse.pde

org.eclipse.mylyn.ide_feature

nrm arlinca mulun faatura

Version
1.3.100.v20110520-0800-7B78FHk8sF 7BB7SBBSEYDS
1.0.0.201106090707-r

2.7.0.v20110606-0949
3.7.0.v20110425-2050-777D-81B2B20685C3A6E34272
3.7.0.v20110520-0800- 7z8gFchFMTAFYKuULgBLyRja9B 158
3.7.0.v20110504-0800- 7Th 7qFVpFEX2XnmYt]_9RfO7
3.6.0.v20110608-1400

2 A N TNRNR-1ANN

Repository

packages/repos/artifactLocalRepository
packages/repos/artifactLocalRepository
packages/repos/artifactLocalRepository
packages/repos/artifactLocalRepository
packages/repos/artifactLocalRepository
packages/repos/artifactLocalRepository

packages/repos/artifactLocalRepository
narbkamac/ranncfartifartl arslBanncitnng

3. The mapping between features and tests, as for example the one used in the

experiment in the paper.

A
1 Feature

2 Rcp_platform
3 RcP_platform
4 RCP_Platform

5
6 Cvs
7 cvs
8
9 PDE
10 PDE
11
12 JoT
13 linT

5. Executing the Technique Described in the Paper

B

Test Application

or;
or;

or;
or

Test Component
org.eclipse.test.feature.group
org.eclipse.ant.core
org.eclipse.ui tests

org

org

1 o

1 ory

ion ory

nce tact raratactannlicatinn

D
Test Version
3.5.0.v20110503-...
3.2.300.v20110511
3.6.0.120110602-0100

3.7.0.120110510-0800
3.7.0.120110510-0800

1.0.100.v20110523-1600

1.0.0.v20100601

3.4.0.v_B61
2a0v RE

org.eclipse.team.tests.core.AllTeamTests
org.eclipse.team.tests.core.AllTeamUITests

org. Ecllpse jdt.core.tests.builder.BuilderTests
an it pora tacts RunEArmattarTacts

3
Test Repository
packages/eclipse-junit-tests-120110613-1736
packages/eclipse-junit-tests-120110613-1736
packages/eclipse-junit-tests-120110613-1736, pack

packages/eclipse-junit-tests-120110613-1736
packages/eclipse-junit-tests-120110613-1736

org.eclipse.pde.api. tools.tests. ApiToolsPluginTestSuite packages/eclipse-junit-tests-120110613-1736
org.eclipse.pde.internal.ds.tests.AllDSModelTests

packages/eclipse-junit-tests-120110613-1736

packages/eclipse-junit-tests-120110613-1736
narkagac/arlinca innit-tacre 121108121726

The following command will perform the technique described in the paper fully
automatically. When the feature model, the features themselves or the test suites are changed,
there is no additional required manual work to redo the testing other than executing this
command. basedir is the root directory of the testing system, t is the strenght of the

198

combinatorial interaction testing and timeout is the time in seconds after which a test suite
execution will be aborted.

java no.sintef.ict.splcatool.lasplt.LTSPLT basedir t timeout

Output such as the following will be produced on the command line:

Converting Package Mapping File to CSV [done]
Converting Feature-Test Mapping File to CSV [done]
Loading Mapping Files [done]
Generating 2-wise Covering Array [done]
Loading Covering Array [done] Products: 14
Test Product O:
Installing base product: [done]
Installing features:
Installing feature EclipseIDE [nothing to install]
Installing feature RCP_Platform [nothing to install]
Installing tests:
Installing tests for EclipseIDE
Installing tests for RCP_Platform
Installing test org.eclipse.test.feature.group [done]

Installing test org.eclipse.search.tests [done]
Running tests:
Running tests for EclipseIDE
Running tests for RCP _Platform
Running test org.eclipse.ant.tests.core.AutomatedSuite [done] 100%
(85/85)
Running test org.eclipse.compare.tests.AllTests [done] 89% (101/113)
Running test org.eclipse.core.internal.expressions.tests.AllTests
[done] 100% (108/108)

Running test org.eclipse.search.tests.AllSearchTests [already exists]
78% (29/37)
Test Product 1:
Installing base product: [already exists]
Installing features:
Installing feature WindowBuilder [done]
Installing feature SVN15 [done]
Installing feature EclipseIDE [nothing to install]

Installing feature RCP_Platform [nothing to install]
Installing feature Datatools [done]

Installing feature SVN [nothing to install]

Test Product 13:

The result produced by the experiment reported in the paper are available.

6. Generate the web-view for the results

The command in the previous step will produce logs containing the contents of stdour and
stderr during test execution called failure-<product nr>-<test class

name>. log and test result details in files called product<product nr>-<test
class name>-test-result.xml. The result produced by the experiment reported in
the paper are available.

199

These results can be compiled into a report by executing the following command.

java no.sintef.ict.splcatool.lasplt.GenerateWebView basedir

This will produce a HTML-document, such as the one for the Eclipse IDE experiment in the
paper.

Applying the Technique for Testing of CVL-based Product Lines

The set up required to run the CVL-based version of the technique is found in
CVLLASPLTInput.java (Template found in CVL toolchain).

e A CVL model modelling the variability of the product line with bindings to the model
artifacts. (Safety Module Case)

e Class path for test execution

e Feature-Test Mapping (Safety Module Case)

It also requires the following tools:

e SPLCATool v0.3 (SPLC 2012)

e Javaruntime 1.6

e Eclipse 3.7.0 Eclipse Modeling Tools

e CVL Headless build (Plugin in CVL toolchain)

e JavaFrame Headless build (Plugin in CVL toolchain)

Run the testing technique fully automatically by calling: java -jar cvlsplt.jar.The
CVL-tool chain is available. Contact us for the source code.

When run, it will produce output as follows:

Extracting Feature Model from CVL Model: Done
Generating 2-wise Covering Array: Done
Injecting Covering Array into CVL model: Done
Executing CVL:
Generated %basepth%/model/product(.uml
Generated %basepth%/model/productl.uml
Generated %$basepth%/model/product?.uml

Generated %basepth%/model/productl0.uml
Generated %basepth%/model/productll.uml
$basepth%/model/product0.uml
Moving to %$basepth%/JFWS/ProductO/product.uml
Running JavaFrame Generator: Exit code: 0
Building workspace: Exit code: 0
Building workspace: Exit code: O
Run Tests:
SafetyDrive.GeneralStartUp: [success]
SafetyDrive.Level3StartUpTest: [success]
Done
%basepth%/model/productl.uml

200

Appendix B

Algorithms Based on Weighted
Sub-Product Line Models

In this appendix, we include details for algorithms related to weighted sub-product line models.
These were not included in Paper 4 because of space constraints. A free and open-source
implementation of them was released with SPLCATool v0.4 as resource material for the paper.
This appendix provides pseudo-code for the algorithms with some explanation.

B.1 Some New Terms

A weighted t-set is a 2-tuple (w, e) with w being the weight and e being a t-set. The set of all
weighted t-sets is called 5.

A priority queue of weighted t-sets is called P,. P, is an object with two methods: add((w, €)),
a method that adds a 2-tuple to the priority queue, and pop() : (w, e) a method that gets the 2-
tuple at the start of the queue and removes it from the queue.

A weighted sub-product line model, W, is a set of 2-tuples, a set of (w, ('), where C'is a
valid, partial configuration (or sub-product line model) of feature model F'M and w is a weight
given to that sub-product line model.

B.2 Calculating Weights

Algorithm 4 takes a feature model, F'M, a set of weighted sub-product line models, W, and a
strength ¢. It makes a priority queue with weighted t-sets.

Line 1 generates the set of all t-sets from the feature model. Line 2 creates an empty priority
queue. The loop at line 3 loops through each weighted sub-product line model. This will be
our basis when getting t-sets and their weights. If a t-set is not in W, it will not be included in
the sets to cover. This is essentially the same as getting a weight of 0. The loop at line 4 goes
through each t-set contained in the sub-product line model, detailed as Algorithm 5. The loop
at line 5 goes through each possible t-set. At line 6, we check whether the t-set is valid.

Lines 8-19 check whether the partial t-set gotten from W contains s. e contains s if each
assignment in e is in s, lines 9—12, or if the feature with a wild-card from e is in s, lines 13—18.
At line 14, x, the number of wild-cards, is counted.

201

Algorithm 4 Get Priority Queue of Valid, Weighted t-sets:
getW PriorityQueue(FM,W,t) : P,

I: T, < FM.genT(t)

2: P, + PriorityQueue(()

3: for each pair (w,C) in W do

4: for each t-set e in getT Sets(C,t) do
5: for each t-set s in T} do
6: if FM.isSatisfiable(s) then
7: (isIn, x) < (true,0)
8: for each assignment a in e do
9: if a.a € {true, false} then
10: if a & s then

11: isIn < false

12: end if

13: else

14: T—a+1

15: ifa.f € s.getF's() then
16: isIn < false

17: end if

18: end if

19: end for

20: if isIn then

21: Pr.add((w/2%,s))

22: end if

23: end if

24: end for

25: end for

26: end for

If s is contained within e, then s is given the weight of the sub-product line divided by 27,
lines 20-22; 2% is the number of t-sets contained in e.

Algorithm 5 Get t-sets in a Configuration: getT Sets(C,t) : T,

1: T, + 1]

2: ift > 1 then

3: Ty_q < getTSets(C,t — 1)
4: for each t-set e in T;_; do

5: for each assignment a € C do
6: Tt — Tt U ({a} U 6)

7 end for

8: end for

9: else
10: for each assignment a in C do
11: Tt — Tt U {a}
12: end for
13: end if

A sub-algorithm of Algorithm 4 is Algorithm 5. The purpose of this algorithm is to generate
all t-sets, 7}, covered by a configuration, C, of strength ¢. The algorithm starts by initializing
a new, empty set, 73, line 1. If the value of ¢ is 1, all the assignments in C' are added to 73,
lines 10-12. If ¢ is larger than 1, 7;_; is generated, line 3. Then they are combined with every
possible assignment, lines 5—7. This recursive algorithm eventually generates all t-sets covered
by the configuration.

202

B.3 Generating a Weighted Covering Array

Ordinary covering arrays are generated by selecting the product that covers the most uncovered
t-sets first. A weighted covering array is generated by selecting the product that covers the most
weight first. Algorithm 6 is a modification of Algorithm 1 from Paper 2 for weighted covering
arrays.

Algorithm 6 takes a feature model, /"M, a weighted sub-product line model W, a strength
t, and a percentage u. By selecting t-sets to cover from a priority queue of t-sets, prioritized
according to weight, the algorithm keeps generating products until it has covered a u-part, at
which point it stops.

Algorithm 6 Weighted Covering Array Generation: Adaption of Algorithm 1 from the SPLC
2012-paper
GenWeightedCovering Array(FM, W, t, u) : C,

T; + FM.genT(t)
P, + getW PriorityQueue(F M, T;, W, t)
tw < 0
for each t-set e in P; do

tw =tw+ ew
end for
(Cy, cw) < (0,0)
while true do

(C,CO) + (0,0)
10: for each t-set e in P; do
11: if F'M.is_satisfiable(C U e.e) then
12: C+CUe.e
13: CO + COU{e.e}
14: cw +— cw + e.w
15: end if
16: end for
17: P+ P\ CO
18: C < FM.satisfy(C)
19: Ct — Ct U {C}
20: if cw/tw > u then
21: break
22: end if
23: end while

PN

N

Line 1-2 constructs the priority queue of valid t-sets, as described in Algorithm 4. Line
3-6 calculates the total weight of all weighted t-sets. It does this by iterating through the entire
priority queue and adding each weight into a total. At line 7, an empty covering array and an
integer of the weight covered is initialized. Obviously, having no products, the covered weight is
0. Next, the main loop spans from line 8-23. It keeps adding products until the weight covered
over the total weight is larger than or equal u. At this point the algorithm stops, lines 20-22.
At lines 10-16, t-sets are covered, beginning at the top of the priority queue and proceeding
downwards. When a t-set is covered, its weight is added to cw, the covered weight. At line 17,
the covered t-sets are removed from the priority queue. At lines 18—19 the new product is added
to the covering array, before deciding whether to stop at lines 20-22.

203

B.4 Generating Improvement Suggestions

Algorithm 7 describes how to generate suggestions for improvement of an existing covering
array. The algorithm takes a feature model, F'M, a covering array, C'A, a weighted sub-product
line model, W, a strength, ¢, and a number, n, of how many changes of a single product to
consider.

Algorithm 7 Generate Suggestions
genImpSug(FM,CA, W t,n): S
I: S« 0

2: if n > 0 then
3: orgeov = getWeightCoverage(FM,CA, W,t)

4: S« SUgenImpSug(FM,CA,W,t,n—1)
5: for each product C in C'A do
6: for each t-set e in getT'Sets(C,n) do
7: for each assignment a in e do
8: a.a < —a.a
9: end for
10: if FM.isSatisfiable(C) then
11: newcov = getWeightCoverage(FM,CA, W,t)
12: if newcov > orgcov then
13: S.add(newcov, e.copy())
14: end if
15: end if
16: for each assignment a in e do
17: a.a +— —a.qa
18: end for
19: end for
20: end for
21: end if

Line 1 initializes a new set S that will contain the suggestions and their new coverage. If
the number of changes wanted is higher than 0, line 2, line 3 calculates the current weight
coverage of the covering array given. This algorithm is detailed as Algorithm 8. Then, at line
4, all changes of size one less than n is calculated. The algorithm then, at lines 5 and 6, iterates
through all products and all n-sets covered by them. (Note, that since we are searching for n
changes, we want the n-sets and not the t-sets.) All assignments in this n-set are reversed, lines
7-9, and, if the new configuration is valid (line 10), the new coverage is calculated (line 11).
If the new coverage is strictly larger than the original coverage, the suggestion is added to the
set of suggestions, S. The suggestion is copied into the set. The assignments are then restored,
lines 16-18.

Note that this algorithm is data-parallel. The set gotten at line 7 is huge, easily containing
millions of elements; the rest of the algorithm can be run in parallel on as many nodes, at most.

Algorithm 8 is called two places in Algorithm 7. The purpose of this algorithm is to calculate
the percentage of the total weight is covered, cov, by a covering array C'A of feature model F'M
of strength ¢, given the weights and the sub-product lines model V.

The algorithm proceeds by first getting the set of all weighted t-sets, line 1. Line 3-5
calculates the total weight. Lines 610 collects all t-sets covered by the covering array into a
set T;. Note that since 7; is a set, duplicates do not occur. Then, the weight of all covered t-sets
are summed up, lines 11-17, and the percentage calculated and returned, line 18.

204

Algorithm 8 Generate Weight Coverage
getWeightCoverage(FM,CA,W,t) : cov

— e e e e e e e
I A N T

PRI N AR

. Pr + getW PriorityQueue(FM, FM.genT(t), W, t)
(tw, cw, cov, Ty) « (0,0,0,0)
for each pair e in P; do

tw=tw+ ew
end for
for each product C' in C'A do

for each t-set e in getT'Sets(C, t) do

T, < T, U {8}
end for

: end for
. for each t-set e in T} do

for each pair p in P; do
if ¢ = p.c then
cw = p.w
end if
end for

: end for
D cov — cw/tw

205

Appendix C

Details for Comparisons

Table C.1, C.2, C.3, C.4 and C.5 shows the details of the average running time of ICPL, CASA,
MoSo-PoLiTe, IPOG algorithms and the basic algorithm, respectively.

Figure C.1, C.2 and C.3 show the time performance of the five algorithms with an estimated
line on a logarithmic scale. Notice how ICPL’s line is characteristically different from all the
other lines.

207

Table C.1: Performance of ICPL on Large Feature Models
*Average based on less than 100 measurements.
tCovering arrays for t-sets containing with only included features (1/8th of the t-sets), the memory usage
was limited to 128 GiB instead of 32 GiB, and the algorithm was allowed to run in 64 processors at 100%

activity instead of 6.

Constraints | SAT | 1- ! B 2- 2-. 3- 3-.
Feature Model\keys Features | (CNF time | wise V.Vlse wise V.Vlse wise V.Vlse
clauses) (ms) | size tme size time size time
(s) (s) (s)
2.6.28.6-icsel1.dimacs 6,888 187,193 125 25 89 | *480 | *33,702 - -
freebsd-icsel1.dimacs 1,396 17,352 18 9 10 77 240 | 78 | 12,540
ecos-icsel1l.dimacs 1,244 2,768 12 6 2 63 185 | 64 1973
Eshop-fm.xml 287 22 5 3 <1 21 51| 108 457
Violet.m 101 90 1 2 <1 26 2| 122 32
Berkeley.m 78 47 1 4 <1 23 1 99 10
arcade_game_pl_fm.xml 61 35 3 3 <1 18 1 64 5
Gg4.m 38 23 1 6 <1 20 1 61 2
Table C.2: Performance of CASA on Large Feature Models
*Average based on less than 100 measurements.
Constraints | 1- ! " 2- 2_. 3- 3_.
Feature Model\keys Features | (CNF wise Wlse wise V.Vlse wise V.VISG
clauses) size tme size time size time
(s) (s) (s)
2.6.28.6-icsel1.dimacs 6,888 187,193 - - - - - -
freebsd-icsel1.dimacs 1,396 17,352 - - - - - -
ecos-icsel 1.dimacs 1,244 2,768 | *11 | *51,705 - - - -
Eshop-fm.xml 287 22 5 1,274 | *31 | *10,040 - -
Violet.m 101 90 3 38 23 79 | *93 | *16,310
Berkeley.m 78 47 3 39 19 145 | *77 *9.142
arcade_game_pl_fm.xml 61 35 3 22 13 32 46 1,999
Gg4.m 38 23 6 8 17 14 50 134
Table C.3: Performance of MoSo-PoLiTe on Large Feature Models
*Average based on less than 100 measurements.
Constraints | 1- l_. 2- 2_. 3- 3_.
Feature Model\keys Features | (CNF wise WIse wise wise wise WIse
clauses) size time size time size time
(s) (s) (s)
2.6.28.6-icsel1.dimacs 6,388 187,193 - - - - - -
freebsd-icsel1.dimacs 1,396 17,352 - - - - - -
ecos-icsel1.dimacs 1,244 2,768 - - - - - -
Eshop-fm.xml 287 22 - - - - - -
Violet.m 101 90 - - 90 <1 | 1,123 164
Berkeley.m 78 47 - - 42 <1 421 23
arcade_game_pl_fm.xml 61 35 - - 38 <1 271 4
Gg4.m 38 23 - - - - - -

208

Table C.4: Performance of IPOG on Large Feature Models
*Average based on less than 100 measurements.

Constraints | 1- ! B 2- 2_. 3- 3_-
Feature Model\keys Features | (CNF wise wise wise WIse wise wise
clauses) size time size time size time
(s) (s) (s)
2.6.28.6-icsel1.dimacs 6,888 187,193 - - - - - -
freebsd-icsel1.dimacs 1,396 17,352 - - - - - -
ecos-icsel 1.dimacs 1,244 2,768 - - - - - -
Eshop-fm.xml 287 22 - - - - - -
Violet.m 101 90 - — | *¥27 | *12,655 - -
Berkeley.m 78 47 - — | *22 *3.087 - -
arcade_game_pl_fm.xml 61 35 - - | *19 *5,858 | *64 | *45,632
Gg4.m 38 23 - - - - 77 2,442
Table C.5: Performance of Alg. 1 on Large Feature Models
*Average based on less than 100 measurements.
Constraints | - \l)v_ise > \z)v_ise 3- ?N_ise
Feature Model\keys Features | (CNF wise | .. wise | .. wise | ..
clauses) size time size time size time
(s) (s (s)
2.6.28.6-icsell.dimacs 6,888 187,193 — - — - — —
freebsd-icsel1.dimacs 1,396 17,352 7 165 — - — —
ecos-icsel1.dimacs 1,244 2,768 6 13 - - - -
Eshop-fm.xml 287 22 4 1 22 44 - -
Violet.m 101 90 4 <1 28 4| 124 233
Berkeley.m 78 47 3 <1 24 2 95 111
arcade_game_pl_fm.xml 61 35 4 <1 16 2 64 38
Gg4.m 38 23 6 <1 22 <1 63 7

209

210

1000 000

100 000

10 000

1000

100

Figure C.1

10 000 000
1000 000
100 000

10 000
1000

100

10

Figure C.2

10 000 000
1000 000
100 000

10 000
1000

100

10

Figure C.3

®Alg. 1

CASA
A ICPL

T 1

10 100 1000

: Covering Array Sizes vs. Generation Time: 1-wise

®Alg. 1
X
CASA
/{ AICPL
/1% X IPOG
M X MoSo-Polite
M

10 100

: Covering Array Sizes vs. Generation Time: 2-wise

o
P

R AlCPL
A XIPOG
M X MoSo-Polite
X X
e
10 100

: Covering Array Sizes vs. Generation Time: 3-wise

Appendix D

Technical About the Tools

As a part of the research method, we implemented the algorithms that we made in order to
evaluate them in realistic settings. The Software Product Line Covering Array Tool (SPLCA-
Tool) implements various algorithms for working with feature models and covering arrays. It
includes various libraries from the community; thus, it integrates with formats and algorithms
in the research community and from industry.

D.1 Version History

Throughout the PhD project, the tool was updated to include our latest developed and published
results. Each release of the tools was named after the conference its implemented results were
published at. Here is the release history of the tools:

¢ SPLCATool v0.1 (EuroPLoP 2011) - Released 2011-06-14 as resource material for a
paper presented at EuroPLoP 2011 (Paper 3).

* SPLCATool v0.2 (MODELS 2011) - Released 2011-05-03 as resource material for paper
submitted to MODELS 2011 (Paper 1).

* SPLCATool v0.3 (SPLC 2012) - Released 2011-10-28 as resource material for a paper
published at SPLC 2012 (Paper 2).

* SPLCATool v0.4 (MODELS 2012) - Released 2012-04-03 as resource material for paper
submitted to MODELS 2012 (Paper 4).

¢ Automatic CIT Tool Collection (ICTSS 2012) - Released 2012-06-18 as resource ma-
terial for a paper submitted to ICTSS 2012 (Paper 5).

The tool provided us with a framework onto which new functionality could be added onto
and experimented with. It also was used to produce the empirical evaluations in the papers
published.

D.2 Architecture

The tool works with three kinds of artifacts given to it by the user along with some instructions
of what to do with them.

211

* Feature Models: In essence, any feature model that can be converted to a propositional
formula can be loaded by the tool. We have, however, only implemented some of the ma-
jor formats for feature modeling used in academia and industry. Whenever possible, the
libraries associated with a particular format have been used. When this was not possible,
custom loaders were developed. When the libraries contained bugs that stopped us, those
bugs were fixed.

* Covering Arrays: A covering array is a set (or an array) of configurations of a feature
model selected such that each t-sets, for some t, are covered (thereby the name covering
array). Each configuration is a set of assignments such that all features are given an
assignment and such that the configuration is valid according to the feature model.

* Weighted Sub-Product Line Models: Similarly as covering arrays, sub-product line
models give assignments to features, but assignments can be left unassigned. The unas-
signed features thus maintain some variability, and the configurations of this partial fea-
ture model are a sub-set of all possible configurations. Therefore, they are called sub-
product line models. The models are called weighted because each sub-product line
model is given a positive integer as a weight.

The first set of functionalities provided by the tool is verification of the artifacts.

* Feature models have two basic requirements: (1) They must have valid syntax, and (2)
they must have at least one valid configuration. Both of these are checked by running the
is_satisfiable task.

* Covering arrays are valid and invalid relative to a feature model. Because a covering
array is a set of configurations of the feature model, they must, to be valid, be valid
configurations of the feature model. This is verified using the verify_solutions
task.

* Weighted sub-product line models are also valid or invalid relative to a feature model.
Because they are not configurations but sub-product lines, they have the same requirement
as feature models: They must give at least one valid configuration. This is checked by
running the verify_weighted_solutions task. In addition, the weights must be
positive integers.

The second set of functionalities is the various algorithms:

* Generating covering arrays: A covering array is produced from a feature model and a
strength ¢ for the strength of the coverage. Various algorithms can be invoked for gen-
erating covering arrays. The algorithms all have different characteristics of (1) speed of
generation, (2) size of resulting covering array, (3) variance in results between invocations
and (4) supported additional features.

* Calculating the coverage of a set of products: Given a feature model and a set of
configuration and a strength ¢, the t-wise coverage of the products given the feature model
can be calculated. The coverage can be given either as a t-set coverage in percent of t-sets

212

covered by the configurations or as weight coverage in percent of the weight covered by
the configurations. To calculate weight coverage, a weighted sub-product line model is
also required.

* Generate a list of suggestions for improving the weight coverage of a set of products:
Given a feature model, a set of products and a weighted sub-product line model, the set
of products might be improved by changing it slightly. Suggesting such small changes to
improve coverage is the role of this class of functionality.

D.2.1 Feature Model Formats

The following five formats are supported.

* GUI DSL Models (.m) This is a feature model format used by the Feature IDE tools
suite [155]. It is as a format by the AHEAD and GenVoca tools by Automated Software
Design Research Group at the University of Texas at Austin.

e Simple XML Feature Model (SXFM) (.xml) SXFM is a feature model format used to
store feature models for the Software Product Line Online Tools (SPLOT)! developed

by the Generative Software Development Lab / Computer Systems Group, University Of
Waterloo, Canada, 2010.

* DIMACS CNF format (.dimacs) This is the format used by the SAT4J library. It has
become a standard format for Boolean formulas in CNF. It was initially proposed as a for-
mat for CNF formulas by the Center for Discrete Mathematics and Theoretical Computer
Science (DIMACS) [48].

* CVL 1.x (.xmi or .cvl) CVL is a variability-modeling format proposed in 2008 for adding
variability mechanisms to DSLs [69]. It is currently being considered as a standard for
variability-modeling by the OMG [71]. The version 2 of CVL is currently being devel-
oped. However, only the first version of the format is supported by SPLCATool. CVL
models can be created using the CVL Tool?.

Due to the richness of CVL models, a feature model must be extracted from it before it can
be loaded. Download the CVL Tool chain from the ICTSS 2012-paper resource page®,
unzip CVLUtils. jar and execute java —-cp CVLUtils;CVLUtils/lib/x*
CVL2GDSL model.cvl to produce a Feature IDE GUI DSL file model.cvl.m. It
can be loaded with the normal loading procedure.

D.2.2 Configuration Set Formats

Covering Arrays are a set of configurations of a feature model. Thus, except for their special
property, they are no different from a set of configurations.

'"http://gdansk.uwaterloo.ca:8088/SPLOT/sxfm.html, retrieved 2013-01-05

’http://www.omgwiki.org/variability/doku.php/doku.php?id=cvl_tool_from_
sintef

Shttp://heim.ifi.uio.no/martifag/ictss2012/

213

http://gdansk.uwaterloo.ca:8088/SPLOT/sxfm.html
http://www.omgwiki.org/variability/doku.php/doku.php?id=cvl_tool_from_sintef
http://www.omgwiki.org/variability/doku.php/doku.php?id=cvl_tool_from_sintef
http://heim.ifi.uio.no/martifag/ictss2012/

* Comma Separated Values (CSV): Due to the use of the comma as a decimal mark in
Norway, Norwegian CSV files are semi-colon separated instead of comma-separated.

Configurations are stored in the following way, textually: The first entry in the file must
be "Feature\Product;". This means that the features will be listed in the rows, and the
products will be listed in the columns. This is the most practical arrangement for editing
and viewing. Following this entry, the names of the products are listed. This can be
as simple as 1, 2, 3 etc., written as "1;2;3;". On each line following the first line is a
feature name followed by either an "X" or a "-" when the feature is included or excluded,
respectively, for the product in that column. Editing these files in Excel or similar is of
course recommended.

* Excel Office Open XML (XSLX): These files are edited using Excel or similar. They
are loaded by the tool using the "Apache POI - Java API To Access Microsoft Format
Files"-library. There are some additional requirements when using this format in order
to delimit the product configurations and allow for additional comments and entries in
the file: (1) the entry following the lower-most feature must be "#end" and (2) the entry
following the last product name must also be "#end".

D.2.3 Weighted Sub-Product Line Formats

Weighted Sub-Product Line models are a set of configurations of a feature model with two ad-
ditional things added. Thus, except for their two additions, they are stored similarly to covering
arrays.

The two additions are: (1) Assignments can be left unassigned using a question mark. (2)
The feature on the first row is named "#Weight". On this row, the weight for each sub-product
line is given. It must be a positive, non-zero integer.

D.2.4 Versions

There are several versions and editions of the tool. Each version is named after the conference
at which the results it implements are published. For one version, there are several editions
because of licensing concerns.

* v0.1 (EuroPLoP 2011): This version introduced basic covering array generation for 1 <
t < 3 and implements the Bow-Tie reduction algorithm. The covering arrays were stored
in the CSV format.

* v0.2 (MODELS 2011): This version introduced 4-wise covering array generation, SAT-
timing, t-wise coverage calculation and the verification of the solutions in a covering
array.

* v0.3 (SPLC 2012): This version of the tool introduced an implementation of the ICPL
algorithm for 1 < ¢ < 3. In addition, it implements support for running the IPOG, CASA
and MoSo-PoLiTe algorithms; however, these are only available in the Full edition of the
tool. It cannot be freely distributed because of licensing concerns. However, an edition
with the adaptors only (The Adaptors Only Edition) is available into which the three tools

214

can be added to produce the full edition. The IPOG algorithms supports covering array
generation for 1 < ¢ < 6, CASA for 1 <t < 6 and MoSo-PoLiTe for 2 <t < 3.

* v0.4 (MODELS 2012): This version of the tool introduced implementations of algo-
rithms related to weighted sub-product line models. In addition, a GUI was introduced to
make working with the models easier; the output is still written to the command line how-
ever. The command-line interface is still available by extracting SPLCATool-v0 .4~
MODELS2012. jar and calling java —-cp SPLCATool-v0.4-MODELS2012;
SPLCATo0l1-v(0.4-MODELS2012 no.sintef.ict.splcatool.SPLCATool.

The tool introduced (1) the generation of covering arrays prioritized using the weighted
models, (2) the verification of weighted sub-product line models, and (3) the improvement
of existing covering arrays using the weighted sub-product line models. This version also
introduced the loading of covering arrays in the XLSX format.

¢ Automatic CIT Tool Collection (ICTSS 2012): The Automatic CIT Tool introduced
scripts, formats and the implementation of the algorithms for automatic CIT both for
Eclipse- and CVL-based product lines. It also introduced a support for extracting GUI
DSL models from CVL-models, thereby enabling the generation of covering arrays from
feature models within CVL models.

D.2.5 Overview of Algorithms and Object Structures

Inside the tool, the different formats are imported and converted into other formats in order to
be applicable for various algorithms. Figure D.1 shows an overview of the transformations,
what formats are fed to the different algorithms and what these algorithms produce. The figure
is of no particular modeling notation. First of all, feature models can be given to the tool in
the four different formats. They are converted in one direction. After being converted, some
of the formats have exporting to file implemented. Covering arrays are read in from CSV and
XLSX files. Weighed sub-product line models can also be read in from CSV and XLSX files.
The rectangular boxes symbolize internal object-structures; the arrows symbolize algorithms
that generate some other data.

The various algorithms available are further described in the basic user manual, Section D.3.

D.3 User Manual

This basic user manual explains how to use the tool using the Eclipse case study as a running
example. The four files for the Eclipse case study are available on the resource page of the
MODELS 2012-paper*.

* Products — eclipse-red.m.actual.csv

* Feature model — Eclipse.m

e Weights — eclipse-red.m.actual-weighted.csv
* Ordering — eclipse.m.order.csv

“http://heim.ifi.uio.no/martifag/models2012/

215

http://heim.ifi.uio.no/martifag/models2012/

> tset Coverage

A A

CVL1

MoSo-PoLiTe XML

GUI DSL NIST ACTS XML

Y CASA Input
SXFM .CSV, Xlsx
j ICPL Algorithm A A
Y T Y _ v
CNF —> Algorithm 1 > Covering Array

Weighted CA Alg.

Improvements Alg. (<€

PULT

N

Y
Weighted SP »| Weight Coverage

Figure D.1: Transformations in the Tool

The products are the configurations of the 12 products that were available for download on
the Eclipse v3.7.0 (Indigo) web site. They are valid configurations of the feature model that
captures the relations between the different features of the Eclipse product line. The weights-
file contains the current market-situation—it was captured by adding the number of downloads
to each product offered. This is a basic approximation because we have no clue as to how the
users proceeded to configure their products. The ordering files contain the order the features
should be listed in the generated files. This is necessary because there is no intrinsic order to
the features in the other files.

Throughout the manual, the command-line will be used. Only the arguments of the command-
line invocations will be shown.

D.3.1 Analysis

First, let us check the validity of the files and find out some basic information about them. Let
us first check the feature model. The sat_time task (v0.4) will attempt to load the feature
model; if successful, it will print some basic information about it and try to find a single valid
configuration. It will then report whether one exists and how long time it took to find it, its
satisfiability-time. Execute -t sat_time —-fm Eclipse.m (v0.4) to run the task. This
information is returned:

Valid feature model?: yes

Number of Features: 26

Number of CNF-clauses of the composed constraint: 6

Satisfiable?: yes

Satisfying time: 0.446 ms

216

Thus, we know several important things: The feature model is valid and it has a very fast
satisfiability time. This means it is fully usable for all other tasks.

Let us try to find one additional piece of information, the number of valid configurations.
Run -t count_solutions —-fm Eclipse.m(v0.4). This task does not scale very well;
up to about 200 features should work on modern hardware.

* Number of possible configurations: 1,900,544.

This is an enormous number; log, (1, 900, 544) = 21, which is relatively close to 26, the number
of features of the feature model. If each feature is a yes-or-no choice, and each choice was
independent, then the number of configurations would be 2/, where f is the number of features.
Features normally are not independent, but 27 still gives us an idea of the magnitude of the
number of configurations.

Let us now analyze the products. Run -t verify_solutions -fm Eclipse.m
-check eclipse-red.m.actual.csv (v0.4). This task will check whether the config-
urations are valid according to the feature model. It tells us that it is. Had it been invalid, the
tool would output the CNF-clauses that were not satisfied. This gives us a good guide as to
where to look for the problem.

Let us analyze the weighted sub-product line model. Run -t verify_weighted_
solutions —-fm Eclipse.m —-check eclipse-red.m.actual-weighted.csv
(v0.4). This task will check whether the partial configurations are valid. It tells us that it is.
Again, had it been invalid, it would tell us which CNF-clauses were not satisfied.

» Configurations valid?: yes
* Weighted sub-product line models valid?: yes

Finally, let us find the t-set and weight coverage of the products. Run -t calc_cov -fm
Eclipse.m —-s <t> —ca eclipse-red.m.actual.csv (v0.4) to find the t-set cov-
erageand -t calc_cov_weighted —-fm Eclipse.m —-s <t> -ca eclipse-red
.m.actual.csv —-weights eclipse-red.m.actual-weighted.csv (v0.4)to find
the weight coverage, both for 1 < ¢ < 3. That gives the following coverages:

* 1-set coverage: 49/50 ~ 98.0%

* 2-set coverage: 929/1, 188 ~ 78.2%

* 3-set coverage: 10,034/17,877 ~ 56.1%

* 1-wise weight coverage: 52,949, 676/52,949, 676 = 100%

* 2-wise weight coverage: 661, 870,950/661, 870,950 = 100%

* 3-wise weight coverage: 2,623,612,957/2,623,612,957 = 100%

It is not a surprise that the weight coverage is 100%. It is because the weighted sub-product
line model contains only the products that are offered. It would be better to have actual informa-
tion about the market, but such information is unavailable, unfortunately. The TOMRA models
are unavailable due to sensitivity concerns.

The denominators of the t-set coverage are 50, 1,188 and 17,877. These are the number of
valid 1, 2 and 3-sets, respectively. When all are covered, we have a complete t-wise covering
array.

217

The denominators of the weight coverage are 52,949,676, 661,870,950 and 2,623,612,957.
These are the total weight for all valid 1, 2 and 3-sets, respectively. When all the weight is
covered, the weighted covering array has a coverage of 100%.

D.3.2 Generating Covering Arrays

Now that we have analyzed all our models and checked their validity, let us generate some new
things and then verify them.

Generate a t-wise covering array for 1 < ¢ < 3 using ICPL by running -t t_wise -a
ICPL —-fm Eclipse.m -s <t> (v0.3 (ICPL Edition)). This results in the following files
containing the covering arrays.

» Eclipse.m.cal.csv, products: 2, generation time: 26 ms
» Eclipse.m.ca2.csv, products: 12, generation time: 136 ms
* Eclipse.m.ca3.csv, products: 39, generation time: 663 ms

Calculating the coverage of each using the same method as discussed above yields 100%
1, 2 and 3-wise coverage, respectively, as expected. Notice that the 12 products offered by
Eclipse have a 2-wise coverage of 78.2% while 12 products are also needed to yield 100%
2-wise coverage!

It is also possible to calculate covering arrays using other algorithms. Because of licensing
issues, we cannot distribute the full edition of the tool. However, once these tools have been
acquired, the following commands can be used to calculate covering arrays using other algo-
rithms: -t t_wise —-a <a> —-fm Eclipse.m —-s <t> (v0.3 (Full Edition)) where a
1s IPOG, CASA or MoSoPoLiTe. These three support 1 < ¢t < 6,1 <t <6and2 <t < 3,
respectively.

If 12 products, a complete 2-wise covering array, are too costly for testing in your context,
and you would like to get a smaller set that is still related to the market situation, you can use
weighted covering array generation. Let us say we decide to cover 95% of the weight. Run -t
t_wise_weighted —-a ChvatalWeighted —-fm Eclipse.m -s <t> -weights
eclipse-red.m.actual-weighted.csv —-limit 95% (v0.4) for 2 <t < 3 to pro-
duce the following results:

* Eclipse.m.ca2.csv, products: 4, generation time: 341 ms
* Eclipse.m.ca3.csv, products: 3, generation time: 260 ms

Calculating the weighted coverage using the methods discussed above yields 97.05% and
95.08% 2 and 3-wise weight coverage, respectively. Both are, as required, equal to or above
95%.

D.3.3 Extending Towards a Covering Array

A realistic situation when doing product line testing is that certain popular and important prod-
ucts must be tested. For example, for Eclipse, 3 products account for 88% of the downloaded
products. Instead of just adding these 3 products to the already complete covering arrays, we
could start from them to probably make them be a part of the covering array.

218

Extract the "Java", "Java EE" and "Classic" products into a file called eclipse-red.m.
important.csv. To include them in a covering array run -t t_wise —-a ICPL -fm
Eclipse.m -s <t> -startFrom eclipse-red.m.important.csv (v0.3 (ICPL
Edition)). The extended versions are:

* Eclipse.m.cal.csv, products: 5, time: 27 milliseconds
* Eclipse.m.ca2.csv, products: 13, time: 120 milliseconds
* Eclipse.m.ca3.csv, products: 40, time: 507 milliseconds

For 1-wise testing, this does not reduce the effort because there were three important prod-
ucts, but only two were required to achieve 1-wise coverage. For 2-wise testing, the new cover-
ing array has 13, only one more than a fresh 2-wise covering array. For 3-wise testing, the new
covering array has 40 products, also only one more than the 39 required when building a fresh
covering array.

We can also extend covering arrays based on weight. If we start with the three important
products again, let us see what is needed to extend with one more product. We could also extend
based on percentages, but this opportunity is used to demo the size limits.

First of all, the weight coverages of the 3 important products are 98.68%, 97.05% and
95.08%, respectively. Run the following command to extend the set of products with a max-
imum of two new product based on maximizing the weight coverage starting from three im-
portant products for 1 <t < 3: -t t_wise_weighted —-a ChvatalWeighted -fm
Eclipse.m -s <t> -weights eclipse-red.m.actual-weighted.csv
—-startfrom eclipse-red.m.important.csv —-sizelimit 5 (v0.4). The new
set of products of sizes 4, 5 and 5 has weight coverages of 100%, 99.5% and 98.5%, respec-
tively.

D.3.4 Improving a Partial Covering Array

In settings where a complete test system has been set up; for example, if the products of a
hardware product line has been physically set up, it is not good to have drastic changes to the
product configurations.

The tool supports suggesting small changes to an existing set of products to improve its
weight coverage.

An especially important usage of this is in the following situation: A product line gets a new
feature added to it. The company already has a test lab of, say, 12 products set up. The question
now is: To which product is it best to add this feature to maximize the coverage with respect to
the market situation (the weight coverage)?

First add a new feature to Ec1 ipse.mnamed X as an optional feature of RCP_Plat form,
then add a new row to the set of product offered by Eclipse with X set to all excluded (’-’),
then finally, add a new row to the weighted sub-product line model with all unassigned (’?").
This row of unassigneds tells the tool, in effect, that we do not know who will be using the
new feature, so we had better ensure that it is exercised during testing and that it is tested out
together with the other features.

To have the tool figure this out automatically, run -t improve_weighted —-fm
Eclipse.m —-s 2 -ca eclipse-red.m.actual.csv -weights

219

eclipse-red.m.actual-weighted.csv —-search 1 > list.txt (v0.4). Here,
we assume that the offered products are also the products that the Eclipse Projects tests, a real-
istic assumption. We want to maximize our 2-wise interaction coverage, which means that we
want our new feature to be exercised against any other feature. Finally, we want to maximize
the weight coverage to ensure market relevance. Because we only want to activate a single fea-
ture, we only search for single changes, ~search 1. Running the task results in the following
results:

Original weight coverage: 96.3%
Suggested change: Set feature X to included for the product named "1" (the second prod-
uct).

New weight coverage: 99.3%.

Time taken: about 2 seconds.

D.3.5 Automatic CIT: Eclipse-Based Product Lines

This part of the manual explains how to apply Automatic CIT to Eclipse-based product lines.
The first thing that is needed is to set up the directory structure where all files will go. First,
decide on a root directory in which all files related to the testing will be stored. In this directory,
create these directories:

* models — contains all input to the testing tools.

* packages — contains all packages to be used to construct the software to be tested.
* products — will store all built and tested products and their associated workspaces.
* results — will store all generated results.

* scripts — contains all scripts used for testing.

* tools — contains all tools used for testing.

* workspace — workspace for the Eclipse tool used to build the package repository.

The next step is to acquire the required tools. Links are available from the ICTSS 2012-
paper resource page’. Note that all downloads mentioned in this part of the manual is found on
that resource page. Download and extract the following free tools in the "tools" directory.

e 7-Zip Command Line Version (9.20)

* Eclipse Platform (3.7.0)

* UnxUtils (of 2007-03-01), ports of the most important GNU utilities to Windows
* An implementation of Algorithm 3 from the paper

The next step is to build the package repository. Download the mirroring-script, and place
it in the scripts directory. Download and edit the environment set up script in which the path to
the java.exe, cmd.exe and the root directory must be specified. Executing the mirroring script
will construct mirrors for the Eclipse Indigo repositories in "%basedir%/packages/repos/". This
will take a while and might require rerunning the script several times to ensure that all packages

>Appendix A or http://heim.ifi.uio.no/martifag/ictss2012/

220

http://heim.ifi.uio.no/martifag/ictss2012/

were downloaded correctly. The size of these repositories during the experiments presented in
the paper was 3.6 GiB.

Place a copy of the package containing the Eclipse Platform in "packages". Download the
Eclipse Automated Tests for Eclipse 3.7.0. Inside it there is a zip-file called eclipse
-testing/eclipse-junit-tests-I120110613-1736.zip. Extractitin the "pack-
ages" directory.

The next step is setting up the required models. The technique requires three files to be
built: (1) The feature model, for example such as the one for the Eclipse IDEs. (2) The mapping
between features and code artifacts, as for example the one used in the experiment in the paper.
(3) The mapping between features and tests, as for example the one used in the experiment in
the paper. Examples of these files for the Eclipse 3.7.0 system are available on the resource
page.

The next step is execution. The following command will execute Automatic CIT: java
no.sintef.ict.splcatool.lasplt.LTSPLT <basedir> <t> <timeout>.

basedir is the root directory of the testing system, t is the strength of the combinatorial
interaction testing and timeout is the time in seconds after which a test suite execution will be
aborted.

When the feature model, the features themselves or the test suites are changed, there is
no additionally required manual work to redo the testing other than re-executing the above
command.

Output such as the following will be produced on the command line:

Converting Package Mapping File to CSV [done]
Converting Feature-Test Mapping File to CSV [done]
Loading Mapping Files [done]
Generating 2-wise Covering Array [done]
Loading Covering Array [done] Products: 14
Test Product O0:
Installing base product: [done]
Installing features:
Installing feature EclipseIDE [nothing to install]
Installing feature RCP_Platform [nothing to install]
Installing tests:
Installing tests for EclipseIDE
Installing tests for RCP_Platform
Installing test org.eclipse.test.feature.group [done]

Installing test org.eclipse.search.tests [done]
Running tests:
Running tests for EclipseIDE
Running tests for RCP_Platform
Running test org.eclipse.ant.tests.core.AutomatedSuite [done] 100%
(85/85)
Running test org.eclipse.compare.tests.AllTests [done] 89% (101/113)
Running test org.eclipse.core.internal.expressions.tests.AllTests [
done] 100% (108/108)

Running test org.eclipse.search.tests.AllSearchTests [already exists]
78% (29/37)

221

eclipse
-testing/eclipse-junit-tests-I20110613-1736.zip

Test Product 1:
Installing base product: [already exists]
Installing features:
Installing feature WindowBuilder [done]
Installing feature SVN15 [done]
Installing feature EclipseIDE [nothing to install]

Installing feature RCP_Platform [nothing to install]
Installing feature Datatools [done]

Installing feature SVN [nothing to install]

Test Product 13:

As a final stage, it is possible to generate a web-view for the results. This is good for using
Automatic CIT in conjunction with continuous integration system such as Hudson® or Jenkins’.

The command in the previous step will produce logs containing the contents of stdout and
stderr during test execution called failure—-<product nr>-<test class name>.log
and test result details in files called product<product nr>-<test class name>
—test-result.xml. The results produced by the experiment reported in the paper are
available on the resource page of Paper 5.

These results can be compiled into a report by executing the following command: java
no.sintef.ict.splcatool.lasplt.GenerateWebView <basedir> This will
produce an HTML-document. An example for the Eclipse IDE experiment is found on the
resource page of Paper 5.

D.3.6 Automatic CIT: CVL Based Product Lines

Automatic CIT can be applied to CVL-based product lines in a similar way to Eclipse-based
product lines. The set up required is found in CVLLASPLTInput. java a template found
in CVL tool chain available from the resource page website. The guidelines for Eclipse-based
product lines can be used to understand how to run Automatic CIT for CVL-based product
lines.

Shttp://hudson-ci.org/
"http://jenkins-ci.org/

222

http://hudson-ci.org/
http://jenkins-ci.org/

Appendix E

Details on the Eclipse Case Study

The Eclipse IDEs are used as a case study in the EuroPLoP 2011, MODELS 2012 and ICTSS
2012 papers. All experiments used Version 3.7.0 (Indigo) of Eclipse; it was released in the
summer of 2011.

E.1 Technical About Eclipse v3.7.0 (Indigo)

The architecture and design of Eclipse is documented in Rivieres and Beaton 2006 [132]. The
development of Eclipse is open, and most development artifacts, choices made and design de-
cisions are recorded online.

Twelve products are offered online by the Eclipse Project. The configurations of these
products are shown online as a matrix, shown in Figure E.1.

These products are available for 15 combinations of operating system, windowing systems
and hardware architectures. The list of 15 builds available from the Eclipse project is shown in
Figure E.2.

Further, the Eclipse Project specifies which versions are supported. These are shown in
Figure E.3'. According to their documentation, "Eclipse 3.7 is tested and validated on the
following reference platforms".

Eclipse IDE products are built from OSGi bundles [63]. These software assets are identified
by a pair (id : 1D, version : V'), where id is an ID string unique for that bundle conforming to
a grammar for IDs which is the same as the naming conventions for Java packages, and version
is a versioning string valid according to one of several version grammars. The version grammar
used by the Eclipse plug-in system is (.i(.i(.s)?)?)? where ¢ are positive integers including 0
and s is a string. The integers are respectively called *major’, minor’, then either *micro’ or
’service’, and, finally, the ’s’ is called ’qualifier’.

Bundles are stored in Java archives named id_version.jar. They are published online?.

The basic Eclipse platform is distributed as a zip-package. This package can be extracted
into a new folder and is then ready to use. It contains the capabilities to allow each feature and
test suite to be installed automatically using the following command:

"http://web.archive.org/web/20110608032901/http://www.eclipse.org/
projects/project-plan.php?projectid=eclipse
http://download.eclipse.org/releases/indigo/

223

http://web.archive.org/web/20110608032901/http://www.eclipse.org/projects/project-plan.php?projectid=eclipse
http://web.archive.org/web/20110608032901/http://www.eclipse.org/projects/project-plan.php?projectid=eclipse
http://download.eclipse.org/releases/indigo/

— — —
dEMOe -~ & U @Sl o P e
Java Java CiC++ CIC++ RCP/RAP Modeling Reporting Parallel Scout Testers Javascript Classic

EE Linux

RCP/Platform v v v v v v v v v v v v

cvs v v v v v v v v v v v v

EGit v v v v

EMF v v v v

GEF v v v v

JOT v v v v v v v

Mylyn v v v v v v v v v v v

Web Tools v v v

Linux Tools v v v

Java EE Tools v v

XML Tools v v v v v

RSE v v v v v

EclipseLink v v v

PDE v v v v v v

Datatools v v

coT v v v

BIRT v

GMF v

PTP v

MDT v

Scout v

Jubula v

RAP v

WindowBuilder v

Maven v

Figure E.1: Product Configuration of the Twelve Eclipse IDE Products Offered by the Eclipse
Project

Eclipse SDK

Status Platform

Windows (Supported Versions)

Windows (x86_64) (Supported Versions)
Linux (x86/GTK 2} (Supported Versions)
Linux (x86_64/GTK 2) (Supported Versions)
Linux (PPCEB4/GTK 2) (Supported Versions)
Linux (s390:0/GTK 2) (Supported Versions)
Linux (s390/GTK 2} (Supported Versions)
Salaris 10 (SPARC/GTK 2)

Solaris 10 (x86/GTK 2)

HP-UX (1A64_32/GTK 2)

AlX (PPC/IGTK 2)

AlX (PPCB4/GTK 2)

Mac OSX (Mac/Cocoa) (Supported Versions)
Mac OSX (Mac/Cocoa/x86_64) (Supported Versions)
Mac OSX (Mac/Carbon) (*** Unsupported **%)

Source Build (Source in _zip) (instructions)

LA KCKKCKKRR s

Source Build (Source fetched via CVS) (instructions)

Figure E.2: Builds Available from the Eclipse Projects

224

Operating System Version |Hardware JRE ‘Windowing System
. x86 32-bit
x86 64-bit
x86 32-bit .
Windaws Vista Oracle Java § Update 17 Winaz
¥86 G4-hit IBM Java 6 SR8
x86 32-bit
XP
x36 64-bit
X80 32-0it Oracle Java 6 Update 17
Red Hat Enterprise Linux B& |x86 64-nit IBI Java & SR3 GTK
Power 64-bit IBM Java 6 SR8
x86 32-bit Oracle Java 6 Update 17
SUSE Linux Enterprise Server |11 *56 G4-bit IBI Java & SR3 GTK
Power 64-bit IBM Java 6 SR8
x86 32-bit
Ubuntu Long Term Support | 10.04 Oracle Java 6 Update 17| e
%86 Gd-hit IBM Java 6 SR8
x86 32-bit
Cracle Solaris 10 Cracle Java 6 Update 17 GTK
SPARC 32-bit
HP-LIX 11iv2 |iab4 32-bit W HP-UX Java 6 Update 10 | GTK
IBIM ALK 5.3 Power G4-bit IBM Java 6 SR8 GTK
Universal 32-bit
Apple Mac 0S8 X 10.6 Apple Java 10.6 Update 2 | Cocoa
Universal G4-bit

Figure E.3: Supported Versions of Environment Artifacts

<eclipse executable> -application org.eclipse.equinox.p2.director -
repository <repositoryl,...> —installIU <id>/<version>

E.2 Contributed Artifacts

As for all of the other case studies, Eclipse does not employ an explicit product line methodol-
ogy. As is quite clear, however, their approach is at least very close. It was quite easy to build a
feature model by browsing through their bundles.

From any bundle b€ B it is possible to extract a set by with the dependencies of bundle b.
The dependencies is a set of pairs (id : ID,vr : VR), where id is an ID and vr is a string
specifying a range of versions according to grammars of ranges of versions. Figure E.4 shows
the complete feature diagram of the Eclipse IDEs. The products shown in E.2 are of course
valid (partial) configurations of this feature model.

E.3 Details on Automatic CIT of Eclipse

This section details the large-scale application of the Automatic CIT technique to the entire
Eclipse IDE Indigo (v3.7.0) product line supported and maintained by the Eclipse Project.

For the experiment in Paper 5, the part of the Eclipse IDE product line shown in Figure E.5
was selected for testing; three additional features were included. The products offered by

225

JoT

PDE ; Maven

GMF

EclipselDE

RCP_Platform
o\o\\o\\\o\ O O ® O O ® O 0

O
EMF ; GEF cDT Ccvs WebTools SVN Mylyn || PTP Jubula RAP EGit RSE EclipseLink WindowBuilder Tu_mmoq:;

Datatools ; Maven = EMF

GMF = GEF

Hardware

WindowingSystem

BIRT = GEF A JDT A PDE
Carbon A MacOSX A x86 v Cocoa A MacOSX A (x86 v x86_64) v

GTK A Linux A PPC v GTK A Linux A PPC64 v

GTK A Linux A s390 v GTK A Linux A s390x v
GTK A Linux A x86 v GTK A Linux A x86_64 v
GTK A Solaris A SPARC v GTK A Solaris A x86 v
Motif A AIX A PPC v Motif A hpux A ia64_32 v
Motif A Linux A x86 v Win32 A OS_Win32 A x86 v
Win32 A OS_Win32 A x86_64

Figure E.4: Feature Diagram of the part of Eclipse IDE Indigo (v3.7.0) supported by the Eclipse Project

226

EclipselDE

RCP_Platform

JDT EMF | | GEF | | CDT | | CVS | | WebTools | | SVN | | Mylyn PTP | | Jubula | | RAP | | EGit | | RSE | | EclipseLink | | WindowBuilder

O O
PDE Datatools SVN15 | | SVN16 Additional Constraints:

GMF = GEF
Maven = EMF
Scout BIRT BIRT = GEF A JDT A PDE

Figure E.5: Feature Model for the Eclipse IDE Product Line

Table E.1: Eclipse IDE Products, Instances of the Feature Model in Figure E.5

(a) Official Eclipse IDE products (b) Pair-wise Covering Array
Feature\Product |1(2{3(4(5(6|7|8|9/1011{12 Feature\Product |[1|2{3]4(5|6|7|8|9|1011{12(13
EclipseIDE IXIXIXIXIXIXIXIXIX X | X[X EclipseIDE XIXIXIXIXIXIXIXIX X | X[X | X
RCP_Platform [XXXXXXXXIX| X |X|X RCP_Platform [XIXXXXXIXIXIX X | X|X|X
CVS IXIXIXIXIXIXIXIXIX] X X X CVS XX - - |-] - |-
EGit - xixix]- |- |- - | - | - EGit X - |- XXX - |- X -] - | -
EMF XX -] - |- XIX]- |- - |- | - EMF - IXIXIXIX - | - (XIX X | X X | -
GEF IXIX| - |- |- [XIX[|| - | - | - GEF |- Ixixix - (XXX - | - %] -
IDT XX - |- [(XIXIX[-[X] - | - [X IDT - IXIXIXIX - (X - (XX - [X] -
Mylyn IXIXIXIXXIXIXIXIX| X |X | - Mylyn X - XX - - |-] -] -
WebTools -XI-|-|-]- X[- 1% - WebTools |- x| - (- |- | x| X -] -
RSE -IXIXIX - |- (XX -| - | - | - RSE XX - XX - |- - |-] - | -
EclipseLink -X(-1-1- - X -1- (X - | - EclipseLink - XX - [- X - (XX - -] - | -
PDE - IX-{- XXX - 1X] - |- 1X PDE -IX- XX - (X - X - |- X -
Datatools -X(-1-- =X - - - Datatools - XIXXIX] - |- 1- X - (XX -
CDT x| - -] - CDT |- - (x]- (XIX] - | - |- |-
BIRT R 1 BIRT |- [- |- X -
GMF - - - - GMF |- XXX - (- (X - |-] - | -
PTP 1 1 PTP |- X1 - XX - (X - |-] - | -
Scout =111 - - X -] -] - Scout -X XXX - - -
Jubula -1 - - - - X -] - Jubula -1- XX - X - X - (X - | -
RAP 1) 1 RAP XX - - XX - X - |- |-] -
WindowBuilder [X|-|[-|-[-|-|-|-|-|-|-]- WindowBuilder |- [X|-[X]-[X]-[X]-|-|-]-]-
Maven D N Y 8 Y Y I I Maven -IXX -1 - - XX -] - -
SVN SVN -IX1- |- [xixix(xix - [X] - [x
SVNI15 SVNI15 XXX L] - X
SVN16 SVN16 L-]-1-] - XX - X - (X -] -

Eclipse and a 2-wise covering array are shown in Table E.1.

The different features of the Eclipse IDE are developed by different teams, and each team
has test suites for their feature. Thus, the mapping between the features and the test suites are
easily available.

The Eclipse Platform comes with built-in facilities for installing new features. We can start
from a fresh copy of the bare Eclipse Platform, which is an Eclipse IDE with just the core
features. When all features of a product have been installed, we can run the test suite associated
with each feature (or a combination of features).

E.3.1 Feature Models and Covering Arrays

There are many tools for doing feature modeling and generating covering arrays. For our im-
plementation we use Feature IDE to model the feature model as shown in Figure E.5, and our
SPL Covering Array Tool suite introduced in Paper 4 which is freely available on the paper’s

227

resource website. The covering array generated from the running example using this tool is
presented in Table E.1b.

E.3.2 Implementation with the Eclipse Platform’s Plug-in System

Algorithm 9 shows the algorithm of our testing technique for the Eclipse Platform plug-in sys-
tem®. The algorithm assumes that the following is given: a feature model, F'M/, and a coverage
strength, £.

In the experiment in the previous section, we provided the feature model in Figure E.5. The
algorithm loops through each configuration in the covering array. In the experiment, it was the
one given in Table E.1b. For each configuration, a version of Eclipse is constructed: The basic
Eclipse platform is distributed as a package. This package can be extracted into a new folder
and is then ready to be used. It contains the capabilities to allow each feature and test suite to
be installed automatically using the following command:

<eclipse executable> -application org.eclipse.equinox.p2.director -
repository <repositoryl,...> —installlIU <id>/<version>

Similar commands allow tests to be executed.

A mapping file provides the links between the features and the test suites. This allows
Algorithm 9 to select the relevant tests for each product and to run them against the build of the
Eclipse IDE. The results are put into their respective entry in the result table. (An example is
shown later in Table E.4b.)

3The source code for this implementation including its dependencies is available through the paper’s resource
website, along with the details of the test execution and detailed instructions and scripts to reproduce the experi-
ment.

Algorithm 9 Pseudo Code of Eclipse-based version of Automatic CIT

1: CA < FM.GenerateCoveringArray(t)
2: for each configuration ¢ in C'A do

3: p < GetBasicEclipsePlat form()

4: for each feature f in c do
5 p.anstall Feature(f)
6: end for
7
8
9

for each feature f in c do
tests < f.getAssociatedTests()
: for each test test in tests do
10: p.installTest(test)

11: result < p.runTest(test)
12: table.put(result, c, f)

13: end for

14: end for

15: end for

228

Table E.2: Part of the Relation between Feature Names and Eclipse Bundle ID, Version and
Repository

Feature | Bundle Version Repository
CVS org.eclipse.cvs 1.3.100... | RepoA

EGit org.eclipse.egit 1.0.0... RepoA

EMF org.eclipse.emf 2.7.0... RepoA

GEF org.eclipse.gef 3.7.0... RepoA

DT org.eclipse.jdt 3.7.0... RepoA

PDE org.eclipse.pde 3.7.0... RepoA

CDT org.eclipse.cdt 8.0.0... RepoA

BIRT org.eclipse.birt 3.7.0... RepoA

GMF org.eclipse.gmf 1.5.0... RepoA

SVNI16 | org.polarion.eclipse.team.svn.connector.svnkitl6 | 2.2.2... RepoA, RepoB
SVNI15 | org.polarion.eclipse.team.svn.connector.svnkitl5 | 2.2.2... RepoA, RepoB

E.3.3 Bindings Between Feature Names and System Artifacts

We require bindings from the feature names to the system artifacts. Feature names are found in
the feature model and in the covering array. For Eclipse-based product lines, system artifacts
are identified as with a bundle ID and a version. We also need to know where we can find
the system artifacts. Thus, we also need the URL(s) of the artifact and its dependencies. This
information can be easily entered in a spreadsheet and exported as a Comma Separated Values
(CSV) file. The testing system takes this file as input along with the feature model.

For the running example, an excerpt from such a relation is shown in Table E.2*. Note that
the table has been reduced for presentation in this document. The bundles all really end with
.feature.group, some versions end with a hash and the repositories have been replaced
with a symbolic name. RepoA is the Eclipse update site, and RepoB is the Polarion update site
for subversive.

E.3.4 Automatic Building

We are now in a position to automatically build any Eclipse product. Start with a bundle of the
Eclipse platform, and, for each product, run the following command for each feature:

<eclipse executable> —-application org.eclipse.equinox.p2.director -
repository <repositoryl,...> —installIU <bundle>/<version>

Since the feature name is bound to the bundle ID, bundle version and repositories, we can
simply enter that information to the above boilerplate. After this is done all the products are set
up.

For the running example, setting up the 13 products of the covering array took about 1
hour, and it resulted in about 2.9 GB of Eclipse IDE products. The repositories were locally
mirrored’. For regular usage of this technique, it would be impractical to download the same
files again and again. Therefore, executing the technique with the local mirror is realistic.

“The full tables from the experiment as well as the implementation is available online at http://heim.
ifi.uio.no/martifag/ictss2012/. On this website, everything to reproduce out experiment is available
for free.

SThe local cashes of the update sites takes 3.09 GB and took about 6-7 hours to download at SINTEF.

229

http://heim.ifi.uio.no/martifag/ictss2012/
http://heim.ifi.uio.no/martifag/ictss2012/

Table E.3: Part of the Relation between Feature Names, Test Bundles, Versions and Reposito-
ries, Test Classes and Test Applications.

Feature TestApp | Bundle Version Class Repository|
RCP_Platform [oe].test.feature.group 3.5.0... RepoC
RCP_Platform [oe].ant.core 3.2.300... RepoC
RCP_Platform [oe].ui.tests 3.6.0... RepoC,
RepoA
CVS UITA [oe].team.tests.core 3.7.0... [oe].team.tests.core. AllTeamTests RepoC
CVS UITA [oe].team.tests.core 3.7.0... [oe].team.tests.core. AllTeamUITests RepoC
PDE CoreTA [oe].pde.api.tools.tests 1.1.100... | [oe].pde.api.tools.tests.ApiToolsPluginTestSuite | RepoC
PDE CoreTA [oe].pde.ds.tests 1.0.0... [oe].pde.internal.ds.tests. AlIDSModel Tests RepoC
DT CoreTA [oe].jdt.compiler.tool.tests 1.0.100... | [oe].jdt.compiler.tool.tests.AllTests RepoC
DT CoreTA [oe].jdt.core.tests.builder 3.4.0... [oe].jdt.core.tests.builder.BuilderTests RepoC
DT CoreTA [oe].jdt.core.tests.compiler | 3.4.0... [oe].jdt.core.tests.compiler.parser. TestAll RepoC
IDT UITA [oe].jdt.apt.tests 3.3.400... | [oe]..jdt.apt.tests. TestAll RepoC
DT UITA [oe].jdt.ui.tests 3.7.0... [oe].jdt.ui.tests.Leak TestSuite RepoC

RCP_Platform | CoreTA [oe].core.filebuffers.tests 3.5.100... | [oe].core.filebuffers.tests.FileBuffersTestSuite RepoC

RCP_Platform | CoreTA [oe].core.tests.net 1.2.100... | [oe].core.tests.net. AllNetTests RepoC
RCP_Platform | CoreTA [oe].core.tests.runtime 3.7.0... [oe].core.tests.runtime. Automated Tests RepoC
RCP_Platform | CoreTA [oe].equinox.security.tests 1.0.100... | [oe].equinox.security.tests.AllSecurity Tests RepoC
RCP_Platform | UITA [oe].search.tests 3.6.0... [oe].search.tests. AllSearchTests RepoC
RCP_Platform | UITA [oe].text.tests 3.6.0... [oe].text.tests.EclipseTextTestSuite RepoC

RCP_Platform | UITA [oe].ui.editors.tests 3.4.100... | [oe].ui.editors.tests.EditorsTestSuite RepoC

E.3.5 Bindings Between Feature Names and Test Suites

In order to test these products we need some test suites. Test suites are also bundled up as
Eclipse plug-ins. Thus, we can use the same strategy as with the feature bundles.

For each (1) feature name we need (2) a bundle name, (3) a bundle version and (4) one or
more repositories where the bundle and its dependencies can be found. In order to run the tests,
we need (5) the name of the test application that will run the tests and (6) the name of the class
with the test suite. These six things can be entered in a spreadsheet and exported as a CSV-file
for the tool to use.

For each feature included in a product, the same command as for installing bundles can be
used.

An example of this for the Eclipse IDE is shown in Table E.3. In the experiment, 37 test
suites were used. In the table, only a part of this is shown due to space constraints. The table
has been shortened compared to the real one. The repeating "org.eclipse" has been shortened
to [oe]. CoreTA and UITA are the "core test application" and the "UI test application" bundle
names, respectively. The first three bundles are bundles required to run tests for Eclipse-based
product lines.

Running the Tests To run the tests, the following command is used for each test suite of each
feature included in the product:

<eclipse executable> —-application <TestApp> -o0s <0s> -ws <ws> —arch <arch>
—dev bin -testpluginname <bundle> -classname <testClass> formatter=org.
apache.tools.ant.taskdefs.optional. junit.XMLJUnitResultFormatter, <xml-
output-file>

We have all the information needed to fill in this boilerplate in the bindings file. The output
file records the test results. The information can be extracted and put into a report.

230

Table E.4: Tests and Results for Testing the Eclipse IDE Product Line, Figure E.5, Using the
2-wise Covering Array of Table E.1b

(a) Tests (b) Results, Number of Errors
Test Suite Tests | Time(s) Feature\Prod. JavaEE 1 2 31415 6|7 8 9110 | 11| 12| 13
EclipseIDE 0 0 EclipseIDE - - - - - - - - - - - -] - -
RCP_Platform 6,132 1,466 RCP_Platform 0| 17| 90| 94(0(0| 9 |0]| 918 | 7| 0| 0] 10
CVS 19 747 CVS 0 0 0 0 0
EGit 0 0 EGit - - -
EMF 0 0 EMF - - - -
GEF 0 0 GEF - - - - - - - -
DT 33,135 6,568 DT 0 11 8(01]0 0[]0 5/ 3 0
Mylyn 0 0 Mylyn - - - - -
WebTools 0 0 WebTools - - -] -
RSE 0 0 RSE - - - - -
EclipseLink 0 0 EclipseLink - - - - - -
PDE 1,458 5,948 PDE 0 0 0[]0 0 0 0
Datatools 0 0 Datatools - - - - - -
CDT 0 0 CDT - - -
BIRT 0 0 BIRT -
GMF 0 0 GMF - - - -
PTP 0 0 PTP - - -
Scout 0 0 Scout - -
Jubula 0 0 Jubula - - -
RAP 0 0 RAP - - -
WindowBuilder 0 0 WindowBuilder - - -
Maven 0 0 Maven - -
SVN 0 0 SVN - - -
SVNI15 0 0 SVNI15 - -
SVNI16 0 0 SVNI16 -
Total 40,744 14,729

Results We implemented Automatic CIT for the Eclipse Platform plug-in system, and we
created a feature mapping for 37 test suites. The result of this execution is shown in Table E.4b.
This experiment6 took in total 10.8 GiB of disk space; it consisted of 40,744 tests and resulted
in 417,293 test results that took over 23 hours to produce on our test machine.

In Table E.4b, the first column contains the results from running the 36 test suites on the
released version of the Eclipse IDE for Java EE developers. As expected, all tests pass, as would
be expected since the Eclipse project did test this version with these tests before releasing it.

The next 13 columns show the result from running the tests of the products of the complete
2-wise covering array of the Eclipse IDE product line. The blank cells are cells where the
feature was not included in the product. The cells with a ’—” show that the feature was included
but that there were no tests for this feature in the test setup. The cells with numbers show the
number of errors produced by running the tests available for that feature.

Products 4-5, 7 and 11-12 pass all relevant tests. For CVS and PDE, all products pass all
tests. For product 2-3 and 9-10, JDT’s test suites produce 11, 8, 5 and 3 errors, respectively.
For RCP-platform’s test suites, there are errors for products 1-3, 6, 8—10 and 13.

We executed the whole thing several times to ensure that the results were not coincidental,
and we looked at the execution log to make sure that the problems were not caused by the
experimental set up such as lacking file permissions, lacking disk space or lacking memory.
We did not try to identify the concrete bugs behind the failing test cases, as this would require
extensive domain knowledge that was unavailable to us during our research.

The experiment was performed on Eclipse Indigo 3.7.0. The computer on which we did the measurements
had an Intel Q9300 CPU @2.53GHz, 8 GiB, 400MHz RAM and the disk ran at 7200 RPM.

231

	Abstract
	Acknowledgments
	List of Original Publications
	I Overview
	Introduction
	Contributions
	Overview of the Industrial Cases
	The Eclipse IDEs
	TOMRA's Reverse Vending Machines (RVMs)
	ABB's Safety Modules
	Finale's Financial Reporting Systems
	Additional Studies

	Structure of the Thesis

	Background and Related Work
	Background: Product Line Engineering
	Feature Models
	Basic Feature Models

	Approaches to Product Line Engineering
	Preprocessors
	Feature-Oriented Programming
	Components, Frameworks and Plug-ins
	Orthogonal Variability Modeling (OVM)
	Common Variability Language (CVL)
	Delta-Oriented Programming
	Delta Modeling
	Aspect-Oriented Programming

	Background: Testing
	The Test Process
	V-Model
	Unit Testing
	Model-based Testing
	Regression Testing
	Category Partition (CP)

	Related Work: Product Line Testing
	Overview
	Contra-SPL-philosophies
	Reusable Component Testing
	Feature Interaction
	Model-based SPL Testing
	Reuse
	Subset-Heuristics

	Product Line Use case Test Optimization (PLUTO)
	Product Line Use Cases (PLUCs)
	Using CP on PLUCs

	Scenario-based Test Case Derivation (ScenTED)
	Combinatorial Interaction Testing (CIT)
	Covering Arrays

	Customizable Activity Diagrams, Decision Tables, ... (CADeT)
	Model-driven Software Product Line Testing (MoSo-PoLiTe)
	Incremental Testing

	Related Work: Algorithms for Covering Array Generation
	IPOG
	MoSo-PoLiTe
	CASA
	Other Algorithms

	Contributions
	Overview and Relation to the State of the Art
	Generation of Covering Arrays from Large Feature Models
	Difficulty of Covering Array Generation
	SPLE-SAT is Easy
	Covering Array Generation is Feasible

	Scalable t-wise Covering Array Generation
	Consolidations

	Optimized Testing in the Presence of Homogeneous Abstraction Layers
	Description of the Technique
	Application to Finale's Systems
	Application to the Eclipse IDEs

	Market-Focused Testing based on Weighted Sub-Product line Models
	Weighted Sub-Product Line Models
	Algorithms Based on These Models
	Weighted t-sets
	Weighted Covering Array Generation
	Weight Coverage
	Incremental Evolution

	Application to TOMRA’s RVMs
	Application to the Eclipse IDEs

	Agile and Automatic Software Product Line Testing
	Challenges in Need of an Answer
	Testing Interactions using Tests for Features
	Evaluation of Previous Techniques
	Reusable Component Testing – Pros and Cons
	Combinatorial Interaction Testing – Pros and Cons

	The Automatic CIT Technique
	Application to the Eclipse IDEs
	Application to ABB's Safety Modules

	Tool Support and Integration of Achievements

	Discussion
	Limitations and Threats to Validity
	Future Work
	Empirical Investigations
	Complex Product Lines
	Mixed Hardware and Software Product Lines
	Mixed-Variability Systems
	High Commonality, Few Products
	Optimized Distribution of Test Cases

	Product Line Engineering
	Distributed Variability Specifications
	Utilizing Implementation Information
	Design Principles and SPL Testing
	Exploiting Version Information

	Algorithms
	Further Improvements of ICPL
	Upper bound for ICPL
	Extracting Basic Feature Models
	Evolving Covering Arrays

	Engineering
	Using Virtual Machines
	Full Testing of the Eclipse IDEs

	Conclusion
	Results
	Evaluation

	Bibliography

	II Research Papers
	Overview of Research Papers
	Paper 1: Properties of Realistic Feature Models Make Combinatorial Testing of Product Lines Feasible
	Background
	The Case for Tractable t-wise Covering Array Generation
	Performance of Chvátal's Algorithm for Covering Array Generation
	Discussion

	Paper 2: An Algorithm for Generating t-wise Covering Arrays from Large Feature Models
	Background and Related Work
	The Basic Algorithm
	The New Algorithm: ICPL
	Results and Comparison
	Threats to Validity
	Future Work

	Paper 3: Bow Tie Testing: A Testing Pattern for Product Lines
	Background and Motivating Example
	The Bow Tie Structure
	Pattern: Bow Tie Testing
	Restructuring to Enable the Application of the Pattern
	Similar Patterns

	Paper 4: Generating Better Partial Covering Arrays by Modeling Weights on Sub-Product Lines
	Background and Related Work
	Weighted Combinatorial Interaction Testing
	Industrial Application: TOMRA
	Applicability to the Eclipse IDEs

	Paper 5: A Technique for Agile and Automatic Interaction Testing for Product Lines
	Background and Related Work
	Proposed Technique
	Evaluation with Two Applications and Results
	Benefits and Limitations

	III Appendices
	Resource Pages for Papers
	Resource Page for Paper 1
	Resource Page for Paper 2
	Resource Page for Paper 3
	Resource Page for Paper 4
	Resource Page for Paper 5

	Algorithms Based on Weighted Sub-Product Line Models
	Some New Terms
	Calculating Weights
	Generating a Weighted Covering Array
	Generating Improvement Suggestions

	Details for Comparisons
	Technical About the Tools
	Version History
	Architecture
	Feature Model Formats
	Configuration Set Formats
	Weighted Sub-Product Line Formats
	Versions
	Overview of Algorithms and Object Structures

	User Manual
	Analysis
	Generating Covering Arrays
	Extending Towards a Covering Array
	Improving a Partial Covering Array
	Automatic CIT: Eclipse-Based Product Lines
	Automatic CIT: CVL Based Product Lines

	Details on the Eclipse Case Study
	Technical About Eclipse v3.7.0 (Indigo)
	Contributed Artifacts
	Details on Automatic CIT of Eclipse
	Feature Models and Covering Arrays
	Implementation with the Eclipse Platform's Plug-in System
	Bindings Between Feature Names and System Artifacts
	Automatic Building
	Bindings Between Feature Names and Test Suites

